

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

B.Tech. – III Year I Semester

S.No	Category	Title	L	T	P	C
1	Professional Core	Information Retrieval Systems	3	0	0	3
2	Professional Core	Computer Networks	3	0	0	3
3	Professional Core	Operating Systems	3	0	0	3
4	Professional Elective-I	1. Software Engineering 2. Automata Theory & Compiler Design 3. Cloud Computing 4. Text Mining 5. Mining Massive Datasets 6. A minimum of 12 week MOOC Swayam/ NPTEL course recommended by the BoS	3	0	0	3
5	Open Elective- I		3	0	0	3
6	Professional Core	Information Retrieval Lab	0	0	3	1.5
7	Professional Core	Computer Networks Lab	0	0	3	1.5
8	Skill Enhancement course	Full Stack Development -2 /SWAYAM Plus-Data Engineer/AI Engineer	0	1	2	2
9	Engineering Science	User Interface Design using Flutter / SWAYAM Plus - Android Application Development (with Flutter)	0	0	2	1
10	Evaluation of Community Service Project Internship		-	-	-	2
Total			15	1	10	23
MC	Minor Course (Student may select from the same specialized minors pool)		3	0	0	3
MC	Minor Course A minimum of 12 week, 3 credit course through SWAYAM / NPTEL		3	0	0	3
HC	Honor Course (Student may select from the same specialized honors pool)		3	0	0	3
HC	Honor Course A minimum of 12 week, 3 credit course through SWAYAM / NPTEL		3	0	0	3

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

B.Tech.– III Year II Semester

S.No	Category	Title	L	T	P	Credits
1	Professional Core	Natural Language Processing	3	0	0	3
2	Professional Core	Deep Learning	3	0	0	3
3	Professional Core	Data Visualization	3	0	0	3
4	Professional Elective-II	1. Software Testing Methodologies 2. Cryptography & Network Security 3. DevOps 4. Recommender Systems 5. Medical Image Analysis 6. A minimum of 12-Week SWAYAM /NPTEL Course suggested by the BoS	3	0	0	3
5	Professional Elective-III	1. Software Project Management 2. Mobile Adhoc & Sensor Networks 3. Computer Vision 4. NoSQL Databases 5. Time Series Analysis 6. A minimum of 12-Week SWAYAM /NPTEL Course suggested by the BoS	3	0	0	3
6	Open Elective - II		3	0	0	3
7	Professional Core	Deep Learning Lab	0	0	3	1.5
8	Professional Core	Data Visualization Lab	0	0	3	1.5
9	Skill Enhancement course	Soft skills / SWAYAM Plus - 21 st Century Employability Skills	0	1	2	2
10	Audit Course	Technical PaperWriting & IPR	2	0	0	-
Total			20	1	8	23

Mandatory Industry Internship / Mini Project of 08 weeks duration during summer vacation

MC	Minor Course (Student may select from the same specialized minors pool)	3	0	3	4.5
MC	Minor Course A minimum of 12 week, 3 credit course through SWAYAM / NPTEL	3	0	0	3
HC	Honors Course (Student may select from the same specialized honors pool)	3	0	0	3
HC	Honors Course A minimum of 12 week, 3 credit course through SWAYAM / NPTEL	3	0	0	3

*Under Industry Internship interested students can pursue SWAYAM Plus courses viz, Hands on Masterclass on Data Analytics OR Artificial Intelligence for Real –World Applications.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

B. Tech. – IV Year I Semester

S.No.	Category	Title	L	T	P	Credits
1	Professional Core	Exploratory Data Analysis with Python	2	0	2	3
2	Management Course- II	Human Resource & Project Management	2	0	0	2
3	Professional Elective-IV	1. Responsible AI 2. Blockchain Technology 3. Quantum Computing 4. Robotic Process Automation 5. Social Media Analysis 6. Any of the Min 12-Week SWAYAM /NPTEL Course suggested by the BoS	3	0	0	3
4	Professional Elective-V	1. Agile Methodologies 2. Big Data Analytics 3. Augmented Reality & Virtual Reality 4. High Performance Computing 5. Reinforcement Learning 6. Any of the Min12-Week SWAYAM /NPTEL Course suggested by the BoS	3	0	0	3
5	Open Elective-III		3	0	0	3
6	Open Elective-IV		3	0	0	3
7	Skill Enhancement Course	Prompt Engineering /SWAYAM Plus-Certificate Program in Prompt Engineering and ChatGPT	0	1	2	2
8	Audit Course	Constitution of India	2	0	0	-
9	Evaluation of Industry Internship / Mini Project		-	-	-	2
Total			19	1	02	21
MC	Minor Course (Student may select from the same specialized minors pool)		3	0	3	4.5
HC	Honors Course (Student may select from the same honors pool)		3	0	0	3
HC	Honors Course through SWAYAM/NPTEL (minimum 12 week, 3 credit course)		3	0	0	3

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

B. Tech.– IV Year II Semester

S.No.	Category	Title	L	T	P	Credits
1	Internship & Project Work	Full semester Internship & Project Work	0	0	24	12

Note: Student need to do at least ONE MOOC/NPTEL Course (of 3 credits out of 160 credits) to meet the mandatory requirement (11th criteria, as per R23 Regulations); they are allowed to register one semester in advance

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Minor Engineering

Note:

1. To obtain Minor Engineering, student needs to obtain 18 credits by successfully completing any of the following courses in the concern stream.
2. During Minor Course selection, there should not be any overlapping with Regular/Major/OPEN Electives

Minor in CSE(AI&ML)

Any three of the following courses in offline mode.

1. Artificial Intelligence	3-0-0-3
2. Principles of Database Management Systems	3-0-3-4.5 (Mandatory)
3. Advanced Data Structures & Algorithm Analysis	3-0-3-4.5 (Mandatory)
4. Machine Learning	3-0-0-3

Any two of the following a minimum of 12 Week 3 credit NPTEL MOOC Courses / Relevant courses

1. Artificial Intelligence: Knowledge Representation and Reasoning
2. Computer Networks and Internet Protocol
3. Machine Learning and Deep Learning - Fundamentals and Applications
4. Fundamentals of Object Oriented Programming

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

COURSES OFFERED FOR HONORS DEGREE IN CSE(AI&ML)

Note: 1. To obtain Honor's degree, student needs to obtain 18 credits by successfully completing any of the following courses in the concern stream.

2. During Honors Course selection, there should not be any overlapping with Regular/Major/OPEN Electives

Honor in CSE(AI&ML)

Any three of the following courses in offline mode:

1. Business Intelligence	3-0-0-3
2. Explainable AI	3-0-0-3
3. Generative AI	3-0-0-3
4. Agentic AI	3-0-0-3

Any three of the following a minimum of 12 Week 3 credit NPTEL MOOC Courses / Relevant Courses:

1. Applied Linear Algebra in AI & ML	12 Week 3 Credit Course, MOOCS
2. Privacy and Security in Online Social Media	12 Week 3 Credit Course, MOOCS
3. Reinforcement Learning	12 Week 3 Credit Course, MOOCS
4. GPU Architecture and Programming	12 Week 3 Credit Course, MOOCS
5. Quantum Algorithms and Cryptography	12 Week 3 Credit Course, MOOCS
6. Unmanned Arial Systems & Robotics	12 Week 3 Credit Course, MOOCS

III B. Tech I Semester	INFORMATION RETRIEVAL SYSTEMS	L	T	P	C
		3	0	0	3

Course Objectives:

The main objectives of an Information Retrieval (IR) systems course are to equip students with the knowledge and skills to understand, design, and implement systems that efficiently retrieve relevant information from large datasets

Unit I:

Introduction to Information storage and retrieval systems:Domain Analysis of IR systems, IR and other types of Information Systems, IR System Evaluation Introduction to Data structures and algorithms related to Information Retrieval: Basic Concepts, Data structures, Algorithms.

Unit II:

Inverted Files and Signature Files:Introduction, Structures used in Inverted Files, building an Inverted file using a sorted array, Modifications to the Basic Techniques.

Signature Files: Concepts of Signature files, Compression, Vertical Partitioning, Horizontal Partitioning.

Unit III:

New Indices for Text, Lexical Analysis and Stoplists: PAT Trees and PAT Arrays: Introduction, PAT Tree structure, Algorithms on the PAT Trees, Building PAT Trees as PATRICA Trees, PAT representation as Arrays. Stoplists.

Unit IV:

Stemming Algorithms and Thesaurus Construction:Types of Stemming algorithms, Experimental Evaluations of Stemming, stemming to Compress Inverted Files.

Thesaurus Construction: Features of Thesauri, Thesaurus Construction, Thesaurus construction from Texts, Merging existing Thesauri.

Unit V:

String Searching Algorithms:Introduction, Preliminaries, The Naive Algorithm, The Knutt-Morris-Pratt Algorithm, The Boyer-Moore Algorithm, The Shift-Or Algorithm, The Karp-Rabin Algorithm.

Text Books:

1. Modern Information Retrieval,RicardoBaeza-Yates, Neto, PEA,2007.
2. Information Storage and Retrieval Systems: Theory and Implementation, Kowalski, Gerald, Mark Academic Press, 2000.

III Year I Semester	COMPUTER NETWORKS	L	T	P	C
		3	0	0	3

Course Objectives: The main objectives of this course are to

- Provide insight about networks, topologies, and the key concepts.
- Gain comprehensive knowledge about the layered communication architectures (OSI and TCP/IP) and its functionalities.
- Understand the principles, key protocols, design issues, and significance of each layers in ISO and TCP/IP.
- Know the basic concepts of network services and various network applications.

UNIT I:

Introduction: Network Types, LAN, MAN, WAN, Network Topologies Reference models- The OSI Reference Model- the TCP/IP Reference Model - A Comparison of the OSI and TCP/IP Reference Models, OSI Vs TCP/IP.

Physical Layer –Introduction to Guided Media- Twisted-pair cable, Coaxial cable and Fiber optic cable and introduction about unguided media.

UNIT II:

Data link layer: Design issues, **Framing:** fixed size framing, variable size framing, flow control, error control, error detection and correction codes, CRC, Checksum: idea, one's complement internet checksum, services provided to Network Layer, **Elementary Data Link Layer protocols:** simplex protocol, Simplex stop and wait, Simplex protocol for Noisy Channel.

Sliding window protocol: One bit, Go back N, Selective repeat-Stop and wait protocol, Data link layer in HDLC, Point to point protocol (PPP)

UNIT – III:

Media Access Control: **Random Access:** ALOHA, Carrier sense multiple access (CSMA), CSMA with Collision Detection, CSMA with Collision Avoidance, **Controlled Access:** Reservation, Polling, Token Passing, **Channelization:** frequency division multiple Access(FDMA), time division multiple access(TDMA), code division multiple access(CDMA).

Wired LANs: Ethernet, Ethernet Protocol, Standard Ethernet, Fast Ethernet(100 Mbps), Gigabit Ethernet, 10 Gigabit Ethernet.

UNIT – IV:

The Network Layer Design Issues: Store and Forward Packet Switching, Services Provided to the Transport layer, Implementation of Connectionless Service, Implementation of Connection Oriented Service, Comparison of Virtual Circuit and Datagram Networks, Routing Algorithms: The Optimality principle-Shortest path, Flooding, Distance vector, Link state, Hierarchical, Congestion Control algorithms-General principles of congestion control, Congestion prevention polices, Approaches to Congestion Control-Traffic Aware Routing-Admission Control-Traffic Throttling-Load Shedding. Traffic Control Algorithm-Leaky bucket & Token bucket.

Internet Working: How networks differ, How networks can be connected, Tunneling, internetwork routing, Fragmentation, network layer in the internet.

UNIT –V:

The Transport Layer: The Transport Service, Elements of Transport Protocols, Congestion Control, The internet transport protocols: UDP, TCP

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

.Introduction to Application Layer: Introduction, Client Server Programming, WWW and HTTP,FTP, e-mail, TELNET, Secure Shell, Domain Name System, SNMP.

Text Books:

1. Computer Networks, Andrew S Tanenbaum, Fifth Edition. Pearson Education/PHI
2. Data Communications and Networks, Behrouz A. Forouzan, Fifth Edition TMH.

References Books:

1. Data Communications and Networks- Achut S Godbole, AtulKahate
2. Computer Networks, Mayank Dave, CENGAGE

III B. Tech I Semester	OPERATING SYSTEMS	L	T	P	C
		3	0	0	3

Course Objectives :

The main objectives of the course are to provide understanding the fundamental concepts, functions, and management techniques of operating systems

UNIT-I:

Operating Systems Overview: Introduction, operating system functions, operating systems operations, Computing environments, Free and Open-Source Operating Systems System Structures: Operating System Services, User and Operating-System Interface, system calls, Types of System Calls, system programs, operating system Design and Implementation, operating system structure, Building and Booting an Operating System, Operating system debugging

UNIT-II:

Processes: Process Concept, Process scheduling, Operations on processes, Inter-process communication. **Threads and Concurrency:** Multithreading models, Thread libraries, Threading issues. **CPU Scheduling:** Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple processor scheduling.

UNIT-III:

Synchronization Tools: The Critical Section Problem, Peterson's Solution, Mutex Locks, semaphores, Monitors, Classic problems of Synchronization. **Deadlocks:** system Model, Deadlock characterization, Methods for handling Deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from Deadlock.

UNIT-IV:

Memory- Management Strategies: Introduction, Contiguous memory allocation, Paging, Structure of the Page Table, Swapping. **Virtual Memory Management:** Introduction, Demand paging, Copy-on-write, Page replacement Allocation of frames, Thrashing. **Storage Management:** Overview of Mass Storage Structure, HDD Scheduling.

UNIT-V:

File System: File System Interface: File concept, Access methods, Directory Structure; File system Implementation: File-system structure, File-system Operations, Directory implementation, Allocation method, Free space management; File-System Internals: File-System Mounting, Partitions and Mounting, File Sharing. Protection: Goals of protection, Principles of protection, Protection Rings, Domain of protection, Access matrix

Text Books:

1. Operating System Concepts, Silberschatz A, GalvinPB, GagneG, 10th Edition, Wiley, 2018.
2. Modern Operating Systems, Tanenbaum AS, 4th Edition, Pearson ,2016

Reference Books:

1. Operating Systems -Internals and Design Principles, Stallings W, 9th edition, Pearson, 2018
2. Operating Systems: A Concept Based Approach, D. M Dhamdhere, 3rd Edition, McGraw- Hill, 2013

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Online Learning Resources:

1. <https://nptel.ac.in/courses/106/106/106106144/>
2. <http://peterindia.net/OperatingSystems.html>

III B. Tech I Semester	SOFTWARE ENGINEERING	L	T	P	C
		3	0	0	3

Course Objectives:

The objectives of this course are to introduce

- Software life cycle models, Software requirements and SRS document.
- Project Planning, quality control and ensuring good quality software.
- Software Testing strategies, use of CASE tools, Implementation issues, validation & verification procedures.

UNIT-I:

Introduction: Evolution, Software development projects, Exploratory style of software developments, Emergence of software engineering, Notable changes in software development practices, Computer system engineering.

Software Life Cycle Models: Basic concepts, Waterfall model and its extensions, Rapid application development, Agile development model, Spiral model.

UNIT-II:

Software Project Management: Software project management complexities, Responsibilities of a software project manager, Metrics for project size estimation, Project estimation techniques, Empirical Estimation techniques, COCOMO, Halstead's software science, risk management.

Requirements Analysis and Specification: Requirements gathering and analysis, Software Requirements Specification (SRS), Formal system specification, Axiomatic specification, Algebraic specification, Executable specification and 4GL.

UNIT-III:

Software Design: Overview of the design process, characterize a good software design. Layered arrangement of modules, Cohesion and Coupling. approaches to software design. Agility: Agility and the Cost of Change, Agile Process, Extreme Programming (XP), Other Agile Process Models, Tool Set for the Agile Process (Text Book 2)

Function-Oriented Software Design: Overview of SA/SD methodology, Structured analysis, Developing the DFD model of a system, Structured design, Detailed design, and Design Review.

User Interface Design: Characteristics of a good user interface, Basic concepts, Types of user interfaces, Fundamentals of component-based GUI development, and user interface design methodology.

UNIT-IV:

Coding and Testing: Coding, Code review, Software documentation, Testing, Black-box testing, White-Box testing, Debugging, Program analysis tools, Integration testing, testing object-oriented programs, Smoke testing, and Some general issues associated with testing.

Software Reliability and Quality Management: Software reliability. Statistical testing, Software quality. Software quality management system, ISO9000. SEI Capability maturity model. Few other Important quality standards, and Six Sigma.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

UNIT-V:

Computer-Aided Software Engineering (CASE): CASE and its scope, CASE environment, CASE support in the software life cycle, other characteristics of CASE tools, Towards second generation CASE Tool, and Architecture of a CASE Environment.

Software Maintenance: Characteristics of software maintenance, Software reverse engineering, Software maintenance process models and Estimation of maintenance cost.

SoftwareReuse: Reuse-definition,introduction,reasonbehindnoreusessofar,Basicissuesin any reuse program, A reuse approach, and Reuse at organization level.

Text Books:

1. Fundamentals of Software Engineering, Rajib Mall, 5th Edition, PHI.
2. Software Engineering- A Practitioner's Approach, Roger S. Pressman, 9th Edition, McGraw Hill International Edition.

Reference Books:

1. Software Engineering, Ian Sommerville, 10th Edition, Pearson.
2. Software Engineering, Principles and Practices, Deepak Jain, Oxford University Press.

e-Resources:

- 1) <https://nptel.ac.in/courses/106/105/106105182/>
- 2) https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01260589506387148827_shared/overview
- 3) https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013382690411003904735_shared/overview

III B.Tech I Semester	AUTOMATA THEORY & COMPILER DESIGN	L	T	P	C
		3	0	0	3

Prerequisites: Problem Solving through C

Course Objectives: The main objectives of this course are to

- Demonstrate the interplay between different models and formal languages.
- Employ finite state machines to solve problems in computing machines and their power to recognize the languages.
- Emphasize the concepts learnt in lexical analysis, syntax analysis, and semantic analysis.
- Demonstrate Intermediate code generation and type checking process through several programming exercises.
- Provide the understanding of language translation peculiarities by designing complete translator for mini language with code optimization and generation.

UNIT-I:

Languages, Regular Expressions and Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.

Languages, definitions, Regular Expressions, Regular Grammars, Acceptance of Strings and Languages, Finite Automaton Model, DFA, NFA, conversion of NFA to DFA, Conversion of Regular Expression to NF.

Pumping Lemma for Regular Languages: Statement of the pumping lemma, Applications of the Pumping Lemma.

Unit II:

Stages of Compilation and Lexical Analysis: Chomsky hierarchy of Languages, Phases of compilation overview, Pass, Phase, Interpretation, Bootstrapping.

Lexical Analysis: The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The Lexical- Analyzer Generator Lex,

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Parse Trees, Ambiguity in Grammars and Languages.

Unit III –Syntax Analysis:

Top Down Parsing: Introduction, Backtracking, Recursive Descent parsing, Predictive parsing, pre-processing steps for predictive processing, LL (1) Parsers.

Top Down Parsing: Bottom-up parsing and handle pruning, Structure of LR Parsers, LR (k) grammar parsing-SLR, CLR, LALR (k) grammars, Error Recovery in parsing, parsing ambiguous grammars, YACC parser generator.

Unit IV – Semantic Analysis and Data Structure Support :

Semantic Analysis: Intermediate source program forms – Abstract Syntax Tree, polish notation and 3 address code, Attribute Grammars, Syntax Directed Translation, Conversion of popular programming constructs into intermediate code forms, Inherited Grammars, Type Checking, Equivalence of type expressions.

Symbol Table Organization: Symbol table format, organization, Block structured languages, hashing, Block structure and non-block structure storage allocation: static, runtime and heap allocation for arrays, strings and records.

Unit V –Code Optimization and Code Generation:

Code Optimization: Consideration for optimization, Scope of optimization, Flow Graphs, Basic blocks, partitioning into basic blocks, Compile Time Evaluation.

Machine Independent Optimization: Common Sub expression elimination, dead code elimination, Strength Reduction, Code Movement, Loop Invariant Method, Loop Fusion, Loop Unrolling, Induction Variables and Reduction in Strength. Machine dependent Optimization: Peephole Optimization.

Code Generation: Absolute Code, Relocatable Machine Code, Assembler Code, Register and Address Descriptors, Implementing Global Register Allocation, Using DAG for register allocation, Simple Code generation Algorithm, Generic Code generation Algorithm, Generating code from DAG.

Text Books:

1. Introduction to Automata Theory, Languages, and Computation, 3rd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.
2. Compilers: Principles, Techniques and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman, 2nd Edition, Pearson.
3. Theory of Computer Science – Automata languages and computation, Mishra and Chandrashekaran, 2nd Edition, PHI.
4. Modern Compiler Construction in C, Andrew W. Appel, Cambridge University Press.

Reference Books:

1. Introduction to Formal languages Automata Theory and Computation, Kamala Krithivasan, Rama R, Pearson.
2. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
3. lex&yacc – John R. Levine, Tony Mason, Doug Brown, O’reilly
4. Compiler Construction, Kenneth C. Louden, Thomson. Course Technology.

III B. Tech I Semester	CLOUD COMPUTING	L	T	P	C
		3	0	0	3

Course Objectives: The main objectives of this course are to

- Explain the evolving utility computing model called cloud computing.
- Introduce the various levels of services offered by cloud.
- Discuss the fundamentals of cloud enabling technologies such as distributed computing, service-oriented architecture and virtualization.
- Emphasize the security and other challenges in cloud computing.
- Introduce the advanced concepts such as containers, serverless computing and cloud-centric Internet of Things.

UNIT -I:

Introduction to Cloud Computing Fundamentals: Cloud computing at a glance, defining a cloud, cloud computing reference model, types of services (IaaS, PaaS, SaaS), cloud deployment models (public, private, hybrid), utility computing, cloud computing characteristics and benefits, cloud service providers (Amazon Web Services, Microsoft Azure, Google AppEngine).

UNIT-II:

Cloud Enabling Technologies: Ubiquitous Internet, parallel and distributed computing, elements of parallel computing, hardware architectures for parallel computing (SISD, SIMD, MISD, MIMD), elements of distributed computing, Inter-process communication, technologies for distributed computing, remote procedure calls (RPC), service-oriented architecture (SOA), Web services, virtualization.

UNIT-III:

Virtualization and Containers: Characteristics of virtualized environments, taxonomy of virtualization techniques, virtualization and cloud Computing, pros and cons of virtualization, technology examples (XEN, VMware), building blocks of containers, container platforms (LXC, Docker), container orchestration, Docker Swarm and Kubernetes, public cloud VM (e.g. Amazon EC2) and container (e.g. Amazon Elastic Container Service) offerings.

UNIT-IV:

Cloud computing challenges: Economics of the cloud, cloud interoperability and standards, scalability and fault tolerance, energy efficiency in clouds, federated clouds, cloud computing security, fundamentals of computer security, cloud security architecture, cloud shared responsibility model, security in cloud deployment models.

UNIT -V:

Advanced concepts in cloud computing: Serverless computing, Function-as-a-Service, serverless computing architecture, public cloud (e.g. AWS Lambda) and open-source (e.g. OpenFaaS) serverless platforms, Internet of Things (IoT), applications, cloud-centric IoT and layers, edge and fog computing, DevOps, infrastructure-as-code, quantum cloud computing.

Text Books:

1. Mastering Cloud Computing, 2nd edition, RajkumarBuyya, Christian Vecchiola, ThamaraiSelvi, ShivanandaPoojara, Satish N. Srirama, Mc Graw Hill, 2024.
2. Distributed and Cloud Computing, Kai Hwang, Geoffery C. Fox, Jack J. Dongarra, Elsevier, 2012.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Reference Books:

1. Cloud Computing, Theory and Practice, Dan C Marinescu, 2nd edition, MK Elsevier, 2018.
2. Essentials of cloud Computing, K. Chandrasekhran, CRC press, 2014.
3. Online documentation and tutorials from cloud service providers (e.g., AWS, Azure, GCP)

III B. Tech I Semester	TEXT MINING	L	T	P	C
		3	0	0	3

Course Objectives:

The main objective of the course is to provide understanding of text mining techniques, applying them to real-world datasets, and developing the ability to analyze and interpret results

UNIT I:

Overview of Text Mining: Text Mining, Structured or Unstructured Data, Text Vs Numbers, Types of Problems Can Be Solved, Document Classification, Information Retrieval, Clustering and Organizing Documents, Information Extraction, Prediction and Evaluation.

From Textual Information to Numerical Vectors: Collecting Documents, Document Standardization, Tokenization, Lemmatization, Inflectional Stemming, Stemming to a Root, Vector Generation for Prediction, Multiword Features, Labels for the Right Answers, Feature Selection by Attribute Ranking, Sentence Boundary Determination, Part-Of-Speech Tagging, Word Sense Disambiguation, Phrase Recognition, Named Entity Recognition, Parsing, Feature Generation.

UNIT II:

Using Text for Prediction: Recognizing that Documents Fit a Pattern, Document Classification, Learning to Predict from Text, Similarity and Nearest-Neighbor Methods, Document Similarity, Decision Rules, How to Find the Best Decision Rules, Scoring by Probabilities, Linear Scoring Methods, How to Find the Best Scoring Model, Evaluation of Performance, Estimating Current and Future Performance, Getting the Most from a Learning Method.

Information Retrieval and Text Mining: Is Information Retrieval a Form of Text Mining, Key Word Search, Nearest-Neighbor Methods, Measuring Similarity, Shared Word Count, Word Count and Bonus, Cosine Similarity

UNIT III:

Link Analysis, Document Matching, Inverted Lists, Finding Structure in a Document Collection, Clustering Documents by Similarity, Similarity of Composite Documents, k-Means Clustering, Centroid Classifier, Hierarchical Clustering, The EM Algorithm, What Do a Cluster's Labels Mean, Applications.

UNIT IV:

Looking for Information in Documents: Goals of Information Extraction, Finding Patterns and Entities from Text, Entity Extraction as Sequential Tagging, Tag Prediction as Classification, The Maximum Entropy Method, Linguistic Features and Encoding, Sequential Probability Model, Coreference and Relationship Extraction, Coreference Resolution, Relationship Extraction, Template Filling and Database Construction, Information Retrieval, Commercial Extraction Systems, Criminal Justice, Intelligence

UNIT V:

Case Studies: Market Intelligence from the Web, Lightweight Document Matching for Digital Libraries, Generating Model Cases for Help Desk Applications, Assigning Topics to News Articles, E-mail Filtering, Search Engines, Extracting Named Entities from Documents.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Text Books:

1. Text Mining Predictive Methods for Analyzing Unstructured Information, Sholom M. Weiss Nitin Indurkha Tong Zhang Fred J. Damerau, Springer.

Reference Books:

1. The Text Mining Handbook – Advanced Approaches in Analyzing Unstructured Data, Ronen Feldman, James Sanger, Cambridge.

III B. Tech I Semester	MINING MASSIVE DATA SETS	L	T	P	C
		3	0	0	3

Course Objectives:

The Key objectives include understanding data mining principles, learning about parallel and stream processing algorithms, and gaining experience with tools and technologies like MapReduce and Spark

Unit I:

Data Mining: Introduction, Statistical Modeling, Machine Learning, Computational Approaches to Modeling, Feature Extraction, Statistical Limits on Data Mining, Hash Functions, Indexes, Natural Logarithms, Power Laws.

Unit II:

Map Reduce and the New Software Stack: Distributed File Systems, Map Reduce, Algorithms Using MapReduce, Extensions to MapReduce, Complexity Theory for MapReduce

Unit III:

Mining Data Streams: The Stream Data Model, Sampling Data in a Stream, Filtering Streams, Counting Distinct Elements in a Stream, Counting Ones in a Window, Decaying Windows.

Unit IV:

Frequent Item sets: The Market-Basket Model, Market Baskets and the A-Priori Algorithm, Handling Larger Datasets in Main Memory, Limited-Pass Algorithms, Counting Frequent Items in a Stream.

Unit V:

Clustering: Introduction to Clustering Techniques, Hierarchical Clustering, K-means Algorithms, The CURE Algorithm, Clustering in Non-Euclidean Spaces, and Clustering for Streams and Parallelism.

Dimensionality Reduction: Eigen values and Eigenvectors of Symmetric Matrices, Principal-Component Analysis, Singular-Value Decomposition, CUR Decomposition

Text Books:

1. Jure Leskovec, Anand Rajaraman, Jeffrey Ullman, "Mining of Massive Datasets", Standford Press, 2011.
2. Jimmy Lin, Chris Dyer, "Data-Intensive Text Processing with MapReduce", Morgan Claypool Publishers, 2010.

Reference Books:

1. Ron Bekkerman, Mikhail Bilenko, John Langford "Scaling Up Machine Learning: Parallel and Distributed Approaches", Cambridge University Press, 2012

III B. Tech I Semester	INFORMATION RETRIEVAL LAB	L	T	P	C
		0	0	3	1.5

Course Objectives:

The main objectives of the course are to provide hands-on experimentation on various text pre-processing and mining algorithms,

Programming Language: Python/R

Lab Experiments:

1. Representation of a Text Document in Vector Space Model and Computing Similarity between two documents.
2. Pre-processing of a Text Document: stop word removal and stemming
3. Construction of an Inverted Index for a given document collection comprising of at least 50 documents with a total vocabulary size of at least 1000 words.
4. Classification of a set of Text Documents into known classes (You may use any of the Classification algorithms like Naive Bayes, Max Entropy, Rochio's, Support Vector Machine). Standard Datasets will have to be used to show the results.
5. Text Document Clustering using K-means. Demonstrate with a standard dataset and compute performance measures- Purity, Precision, Recall and F-measure.
6. Crawling/ Searching the Web to collect news stories on a specific topic (based on user input). The program should have an option to limit the crawling to certain selected websites only.
7. To parse XML text, generate Web graph and compute topic specific page rank
8. Implement Matrix Decomposition and LSI for a standard dataset.
9. Mining Twitter to identify tweets for a specific period (and/or from a geographical location) and identify trends and named entities.
10. Implementation of PageRank on Scholarly Citation Network.

III B. Tech I Semester	COMPUTER NETWORKS LAB	L	T	P	C
		0	0	3	1.5

Course Objectives:

The main objectives of this course are to implement the basic concepts of computer networking and acquire practical notions of protocols with the emphasis on TCP/IP.

List of Experiments:

1. Study of Network devices in detail and connect the computers in Local Area Network.
2. Write a C Program to implement the data link layer framing methods such as
 - i) Character stuffing ii) bit stuffing.
3. Write a C Program to implement data link layer framing method checksum.
4. Write a C Program for Hamming Code generation for error detection and correction.
5. Write a C Program to implement on a data set of characters the three CRC polynomials – CRC 12, CRC 16 and CRC CCIP.
6. Write a C Program to implement Sliding window protocol for Goback N.
7. Write a C Program to implement Sliding window protocol for Selective repeat.
8. Write a C Program to implement Stop and Wait Protocol.
9. Write a C Program for congestion control using leaky bucket algorithm
10. Write a C Program to implement Dijkstra's algorithm to compute the Shortest path through a graph.
11. Write a C Program to implement Distance vector routing algorithm by obtaining routing table at each node (Take an example subnet graph with weights indicating delay between nodes).
12. Wireshark
 - i. Packet Capture Using Wire shark
 - ii. Starting Wire shark
 - iii. Viewing Captured Traffic
 - iv. Analysis and Statistics & Filters.
13. How to run Nmap scan
14. Operating System Detection using Nmap
15. Do the following using NS2 Simulator
 - i. NS2 Simulator-Introduction
 - ii. Simulate to Find the Number of Packets Dropped
 - iii. Simulate to Find the Number of Packets Dropped by TCP/UDP
 - iv. Simulate to Find the Number of Packets Dropped due to Congestion
 - v. Simulate to Compare Data Rate & Throughput.

III B. Tech I Semester	FULL STACK DEVELOPMENT- 2	L	T	P	C
		0	1	2	2

Course Objectives:

The main objectives of the course are to

- Make use of router, template engine and authentication using sessions to develop application in ExpressJS.
- Build a single page application using RESTful APIs in ExpressJS
- Apply router and hooks in designing ReactJS application
- Make use of MongoDB queries to perform CRUD operations on document database

Experiments covering the Topics:

- ExpressJS – Routing, HTTP Methods, Middleware, Templating, Form Data
- ExpressJS – Cookies, Sessions, Authentication, Database, RESTful APIs
- ReactJS – Render HTML, JSX, Components – function & Class, Props and States, Styles, Respond to Events
- ReactJS – Conditional Rendering, Rendering Lists, React Forms, React Router, Updating the Screen
- ReactJS – Hooks, Sharing data between Components, Applications – To-do list and Quiz
- MongoDB – Installation, Configuration, CRUD operations, Databases, Collections and Records

Sample Experiments:**1. ExpressJS – Routing, HTTP Methods, Middleware.**

- a. Write a program to define a route, Handling Routes, Route Parameters, Query Parameters and URL building.
- b. Write a program to accept data, retrieve data and delete a specified resource using http methods.
- c. Write a program to show the working of middleware.

2. ExpressJS – Templating, Form Data

- a. Write a program using templating engine.
- b. Write a program to work with form data.

3. ExpressJS – Cookies, Sessions, Authentication

- a. Write a program for session management using cookies and sessions.
- b. Write a program for user authentication.

4. ExpressJS – Database, RESTful APIs

- a. Write a program to connect MongoDB database using Mongoose and perform CRUD operations.
- b. Write a program to develop a single page application using RESTful APIs.

5. ReactJS – Render HTML, JSX, Components – function & Class

- a. Write a program to render HTML to a web page.
- b. Write a program for writing markup with JSX.
- c. Write a program for creating and nesting components (function and class).

6. ReactJS – Props and States, Styles, Respond to Events

- a. Write a program to work with props and states.
- b. Write a program to add styles (CSS & Sass Styling) and display data.
- c. Write a program for responding to events.

7. ReactJS – Conditional Rendering, Rendering Lists, React Forms

- a. Write a program for conditional rendering.
- b. Write a program for rendering lists.
- c. Write a program for working with different form fields using react forms.

8. ReactJS – React Router, Updating the Screen

- a. Write a program for routing to different pages using react router.
- b. Write a program for updating the screen.

9. ReactJS – Hooks, Sharing data between Components

- a. Write a program to understand the importance of using hooks.
- b. Write a program for sharing data between components.

10. MongoDB – Installation, Configuration, CRUD operations

- a. Install MongoDB and configure ATLAS
- b. Write MongoDB queries to perform CRUD operations on document using insert(), find(), update(), remove()

11. MongoDB – Databases, Collections and Records

- a. Write MongoDB queries to Create and drop databases and collections.
- b. Write MongoDB queries to work with records using find(), limit(), sort(), createIndex(), aggregate().

12. Augmented Programs: (Any 2 must be completed)

- a. Design a to-do list application using NodeJS and ExpressJS.
- b. Design a Quiz app using ReactJS.
- c. Complete the MongoDB certification from MongoDB University website.

Text Books:

1. Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, Vasan Subramanian, 2nd edition, APress, O'Reilly.
2. Node.Js in Action, Mike Cantelon, Mark Harter, T.J. Holowaychuk, Nathan Rajlich, Manning Publications. (Chapters 1-11)
3. React Quickly, AzatMardan, Manning Publications (Chapters 1-8, 12-14)

Web Links:

1. ExpressJS - <https://www.tutorialspoint.com/expressjs>
2. ReactJS - <https://www.w3schools.com/REACT> (and) <https://react.dev/learn#>
3. MongoDB - <https://learn.mongodb.com/learning-paths/introduction-to-mongodb>

III Year I Semester	USER INTERFACE DESIGN USING FLUTTER	L	T	P	C
		0	0	2	1

Course Objectives: The main objectives of this course are to

- Learns to Implement Flutter Widgets and Layouts
- Understands Responsive UI Design and with Navigation in Flutter
- Knowledge on Widgets and customize widgets for specific UI elements, Themes
- Understand to include animation apart from fetching data

List of Experiments:

Students need to implement the following experiments

1. a) Install Flutter and Dart SDK.
b) Write a simple Dart program to understand the language basics.
2. a) Explore various Flutter widgets (Text, Image, Container, etc.).
b) Implement different layout structures using Row, Column, and Stack widgets.
3. a) Design a responsive UI that adapts to different screen sizes.
b) Implement media queries and breakpoints for responsiveness.
4. a) Set up navigation between different screens using Navigator.
b) Implement navigation with named routes.
5. a) Learn about stateful and stateless widgets.
b) Implement state management using set State and Provider.
6. a) Create custom widgets for specific UI elements.
b) Apply styling using themes and custom styles.
7. a) Design a form with various input fields.
b) Implement form validation and error handling.
8. a) Add animations to UI elements using Flutter's animation framework.
b) Experiment with different types of animations (fade, slide, etc.).
9. a) Fetch data from a REST API.
b) Display the fetched data in a meaningful way in the UI.
10. a) Write unit tests for UI components.
b) Use Flutter's debugging tools to identify and fix issues.

Text Books:

1. Marco L. Napoli, Beginning Flutter: A Hands-on Guide to App Development.
2. Rap Payne, Beginning App Development with Flutter: Create Cross-Platform Mobile Apps 1st Edition, Apres
3. Richard Rose, Flutter & Dart Cookbook, Developing Full stack Applications for the Cloud, O'reilly.

III B. Tech II Semester	NATURAL LANGUAGE PROCESSING	L	T	P	C
		3	0	0	3

Course Objectives: This course introduces the fundamental concepts and techniques of natural language processing (NLP), computational properties of natural languages and the commonly used algorithms for processing linguistic information.

UNIT I:

INTRODUCTION: Origins and challenges of NLP – Language Modeling: Grammar-based LM, Statistical LM – Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit Distance.

UNIT II:

WORD LEVEL ANALYSIS: Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Backoff, Word Classes, Part-of-Speech Tagging, Rule-based, Stochastic and Transformation-based tagging, Issues in PoS tagging, Hidden Markov and Maximum Entropy models.

UNIT III:

SYNTACTIC ANALYSIS: Context-Free Grammars, Grammar rules for English, Treebanks, Normal Forms for grammar – Dependency Grammar – Syntactic Parsing, Ambiguity, Dynamic Programming parsing – Shallow parsing Probabilistic CFG, Probabilistic CYK, Probabilistic Lexicalized CFGs – Feature structures, Unification of feature structures

UNIT IV:

SEMANTICS AND PRAGMATICS: Requirements for representation, First-Order Logic, Description Logics, Syntax-Driven Semantic analysis, Semantic attachments, Word Senses, Relations between Senses, Thematic Roles, selectional restrictions, Word Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus, Bootstrapping methods, Word Similarity using Thesaurus and Distributional methods.

UNIT V:

DISCOURSE ANALYSIS AND LEXICAL RESOURCES: Discourse segmentation, Coherence-Reference Phenomena, Anaphora Resolution using Hobbs and Centering Algorithm, Coreference Resolution, Resources: Porter Stemmer, Lemmatizer, Penn Treebank, Brill's Tagger, WordNet, PropBank, FrameNet, Brown Corpus, British National Corpus (BNC).

Text Books:

1. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech, 2nd Edition, Daniel Jurafsky, James H. Martin - Pearson Publication, 2014.
2. Natural Language Processing with Python, First Edition, Steven Bird, Ewan Klein and Edward Loper, O'Reilly Media, 2009.

Reference Books:

1. Language Processing with Java and Ling Pipe Cookbook, 1st Edition, Breck Baldwin, Atlantic Publisher, 2015.
2. Natural Language Processing with Java, 2nd Edition, Richard M. Reese,

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

OReillyMedia,2015.

3. Handbook of Natural Language Processing, Second, Nitin Indurkha and Fred J. Damerau, Chapman and Hall/CRC Press, 2010.Edition
4. Natural Language Processing and Information Retrieval, 3rd Edition, Tanveer Siddiqui, U.S. Tiwary, Oxford University Press,2008

III B. Tech II Semester	DEEP LEARNING	L	T	P	C
		3	0	0	3

Course Objectives: The main objective of the course is to make students:

- Understand the concept of CNN and transfer learning techniques, to apply it in the classification problems
- Use RNN for language modeling and time series prediction.
- Use auto encoder and deep generative models to solve problems with high dimensional data including text, image and speech

UNIT I:

Introduction and Overview: Course Overview and Motivation; Introduction to Image Formation, Capture and Representation; Linear Filtering, Correlation, Convolution.

Visual Features and Representations: Edge, Blobs, Corner Detection; Scale Space and Scale Selection; SIFT, SURF; HoG, LBP, etc.

Visual Matching: Bag-of-words, VLAD; RANSAC, Hough transform; Pyramid Matching; Optical Flow

UNIT II:

Deep Learning Review: Review of Deep Learning, Multi-layer Perceptrons, Backpropagation

Convolutional Neural Networks (CNNs): Introduction to CNNs; Evolution of CNN Architectures: AlexNet, ZFNet, VGG, InceptionNets, ResNets, DenseNets.

Visualization and Understanding CNNs: Visualization of Kernels; Backprop-to-image/Deconvolution Methods; Deep Dream, Hallucination, Neural Style Transfer; CAM,Grad-CAM, Grad-CAM++; Recent Methods (IG, Segment-IG, SmoothGrad)

UNIT III:

CNNs for Recognition, Verification, Detection, Segmentation: CNNs for Recognition and Verification (Siamese Networks, Triplet Loss, Contrastive Loss, Ranking Loss); CNNs for Detection: Background of Object Detection, R-CNN, Fast R-CNN, Faster R-CNN, YOLO, SSD, RetinaNet; CNNs for Segmentation: FCN, SegNet, U-Net, Mask-RCNN

UNIT IV:

Recurrent Neural Networks(RNNs): Review of RNNs; CNN + RNN Models for Video Understanding: Spatio-temporal Models, Action/Activity Recognition

Attention Models: Introduction to Attention Models in Vision; Vision and Language: Image Captioning, Visual QA, Visual Dialog; Spatial Transformers; Transformer Networks

UNIT V:

Deep Generative Models: Review of (Popular) Deep Generative Models: GANs, VAEs; Other Generative Models: PixelRNNs, NADE, Normalizing Flows, etc

Recent Trends: Zero-shot, One-shot, Few-shot Learning; Self-supervised Learning; Reinforcement Learning in Vision; Other Recent Topics and Applications

Text Books:

1. Deep Learning- Ian Goodfellow, YoshuaBengio and Aaron Courvile, MIT Press, 2017
2. Deep Learning with Python - Francois Chollet, Released December 2017, Publisher(s): Manning Publications, ISBN: 9781617294433

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

3. Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence - Jon Krohn, Grant Beyleveld, AglaéBassens, Released September 2019, Publisher(s): Addison-Wesley Professional, ISBN: 9780135116821
4. Deep Learning from Scratch - Seth Weidman, Released September 2019, Publisher(s): O'Reilly Media, Inc., ISBN: 9781492041412

Reference Books:

1. Artificial Neural Networks, Yegnanarayana, B., PHI Learning Pvt. Ltd, 2009.
2. Matrix Computations, Golub, G.H., and Van Loan,C.,F, JHU Press,2013.
3. Neural Networks: A Classroom Approach, Satish Kumar, Tata McGraw-Hill Education, 2004.

Web Link:

1. Swayam NPTEL: Deep Learning:
https://onlinecourses.nptel.ac.in/noc22_cs22/preview

III B. Tech II Semester	DATA VISUALIZATION	L	T	P	C
		3	0	0	3

Course Objective:

The main objectives of the course are to familiarize students with the basic and advanced techniques of information visualization & scientific visualization, key techniques of the visualization process, detailed view of visual perception, the visualized data and the actual visualization, interaction and distorting techniques

UNIT-1:

Introduction: Visualization, History of Visualization, Relationship between Visualization and Other Fields, the Visualization Process, Introduction of visual perception, visual representation of data, Gestalt principles, information overloads.

UNIT-II:

Creating visual representations, visualization reference model, visual mapping, visual analytics, Design of visualization applications.

UNIT-III:

Classification of visualization systems, Interaction and visualization techniques misleading, Visualization of one, two and multi-dimensional data, text and text documents.

UNIT-IV:

Visualization of groups, trees, graphs, clusters, networks, software, Metaphorical visualization

UNIT-V:

Visualization of volumetric data, vector fields, processes and simulations, Visualization of maps, geographic information, GIS systems, collaborative visualizations, evaluating visualizations

Recent trends in various perception techniques, various visualization techniques, data structures used in data visualization.

Text Book:

1. Ward, Grinstein, Keim. Interactive Data Visualization: Foundations, Techniques and Applications. Natick : A K Peters, Ltd.
2. E. Tufte, The Visual Display of Quantitative Information, Graphics Press.

Resources:

1. https://kdd.cs.ksu.edu/Courses/CIS536/Lectures/Slides/Lecture-34-Main_6up.pdf

III B. Tech II Semester	SOFTWARE TESTING METHODOLOGIES	L	T	P	C
		3	0	0	3

Course Objective: The main objectives of the course are to

- Provide knowledge of the concepts in software testing such as testing process, criteria, strategies, and methodologies.
- Develop skills in software test automation and management using the latest tools.

UNIT - I

Introduction: Purpose of testing, Dichotomies, model for testing, consequences of bugs, taxonomy of bugs Flow graphs and Path testing: Basics concepts of path testing, predicates, path predicates and achievable paths, path sensitizing, path instrumentation, application of path testing.

UNIT - II

Transaction Flow Testing: transaction flows, transaction flow testing techniques.

Data Flow testing: Basics of data flow testing, strategies in data flow testing, application of data flow testing.

Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability.

UNIT - III

Paths, Path products and Regular expressions: path products & path expression, reduction procedure, applications, regular expressions & flow anomaly detection.

Logic Based Testing: overview, decision tables, path expressions, kv charts, specifications.

UNIT - IV

State, State Graphs and Transition testing: state graphs, good & bad state graphs, state testing, Testability tips.

UNIT - V

Graph Matrices and Application: Motivational overview, matrix of graph, relations, power of a matrix, node reduction algorithm, building tools. (Student should be given an exposure to a tool like Jmeter/ selenium/ soapUI/ Catalon).

Text Books:

1. Software Testing techniques – BarisBeizer, Dreamtech, second edition.
2. Software Testing Tools – Dr. K. V. K. K. Prasad, Dreamtech.

Reference Books:

1. The craft of software testing - Brian Marick, Pearson Education.
2. Software Testing Techniques – SPD(Oreille)
3. Software Testing in the Real World – Edward Kit, Pearson.
4. Effective methods of Software Testing, Perry, John Wiley.
5. Art of Software Testing – Meyers, John Wiley.

III B. Tech II Semester	CRYPTOGRAPHY & NETWORK SECURITY	L	T	P	C
		3	0	0	3

Course Objectives:

The main objectives of this course are to explore the working principles and utilities of various cryptographic algorithms including secret key cryptography, hashes and message digests, public key algorithms, design issues and working principles of various authentication protocols and various secure communication standards including Kerberos, IPsec, and SSL/TLS.

UNIT I:

Basic Principles: Security Goals, Cryptographic Attacks, Services and Mechanisms, Mathematics of Cryptography- integer arithmetic, modular arithmetic, matrices, linear congruence.

UNIT II:

Symmetric Encryption: Mathematics of Symmetric Key Cryptography-algebraic structures, GF(2^n) Fields, Introduction to Modern Symmetric Key Ciphers-modern block ciphers, modern stream ciphers, Data Encryption Standard- DES structure, DES analysis, Security of DES, Multiple DES, Advanced Encryption Standard-transformations, key expansions, AES ciphers, Analysis of AES.

UNIT III:

Asymmetric Encryption: Mathematics of Asymmetric Key Cryptography-primes, primality testing, factorization, CRT, Asymmetric Key Cryptography- RSA crypto system, Rabin cryptosystem, Elgamal Crypto system, ECC

UNIT IV:

Data Integrity, Digital Signature Schemes & Key Management :Message Integrity and Message Authentication-message integrity, Random Oracle model, Message authentication, Cryptographic Hash Functions-whirlpool, SHA-512, Digital Signature- process, services, attacks, schemes, applications, Key Management-symmetric key distribution, Kerberos.

UNIT V:

Network Security-I: Security at application layer: PGP and S/MIME, Security at the Transport Layer: SSL and TLS, **Network Security-II :** Security at the Network Layer: IPsec-two modes, two security protocols, security association, IKE, ISAKMP, System Security-users, trust, trusted systems, buffer overflow, malicious software, worms, viruses, IDS, Firewalls.

Text Books:

1. Cryptography and Network Security, 3rd Edition Behrouz A Forouzan, Deb deep Mukhopadhyay, McGraw Hill,2015
2. Cryptography and Network Security,4th Edition, William Stallings, (6e) Pearson,2006
3. Everyday Cryptography, 1st Edition, Keith M.Martin, Oxford,2016

Reference Books:

1. Network Security and Cryptography, 1st Edition, Bernard Meneges, Cengage Learning,2018

III B. Tech II Semester	DEVOPS	L	T	P	C
		3	0	0	3

Course Objectives:

The main objectives of this course are to:

- Describe the agile relationship between development and IT operations.
- Understand the skill sets and high-functioning teams involved in DevOps and related methods to reach a continuous delivery capability.
- Implement automated system update and DevOps lifecycle.

UNIT-I

Introduction to DevOps: Introduction to SDLC, Agile Model. Introduction to Devops. DevOps Features, DevOps Architecture, DevOps Lifecycle, Understanding Workflow and principles, Introduction to DevOps tools, Build Automation, Delivery Automation, Understanding Code Quality, Automation of CI/ CD. Release management, Scrum, Kanban, delivery pipeline, bottlenecks, examples

UNIT-II

Source Code Management (GIT): The need for source code control, The history of source code management, Roles and code, source code management system and migrations. What is Version Control and GIT, GIT Installation, GIT features, GIT workflow, working with remote repository, GIT commands, GIT branching, GIT staging and collaboration. **UNIT TESTING - CODE COVERAGE:** Junit, nUnit& Code Coverage with Sonar Qube, SonarQube - Code Quality Analysis.

UNIT-III

Build Automation - Continuous Integration (CI): Build Automation, What is CI, Why CI is Required, CI tools, Introduction to Jenkins (With Architecture), Jenkins workflow, Jenkins master slave architecture, Jenkins Pipelines, **PIPELINE BASICS** - Jenkins Master, Node, Agent, and Executor Freestyle Projects & Pipelines, Jenkins for Continuous Integration, Create and Manage Builds, User Management in Jenkins Schedule Builds, Launch Builds on Slave Nodes.

UNIT-IV

Continuous Delivery (CD): Importance of Continuous Delivery, Continuous Deployment Flow, Containerization with Docker: Introduction to Docker, Docker installation, Docker commands, Images & Containers, DockerFile, Running containers, Working with containers and publish to Docker Hub.

Testing Tools: Introduction to Selenium and its features, JavaScript testing.

UNIT-V

Configuration Management - ANSIBLE: Introduction to Ansible, Ansible tasks, Roles, Jinja templating, Vaults, Deployments using Ansible.

Containerization Using Kubernetes(OPENSHIFT): Introduction to Kubernetes Namespace & Resources, CI/CD - On OCP, BC, DC &ConfigMaps, Deploying Apps on Openshift Container Pods. Introduction to Puppet master and Chef.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Text Books:

1. Joyner, Joseph, DevOps for Beginners: DevOps Software Development Method Guide for Software Developers and It Professionals, 1st Edition Mihails Konoplows, 2015.
2. Alisson Machado de Menezes, Hands-on DevOps with Linux, 1st Edition, BPB Publications, India, 2021.

Reference Books:

1. Len Bass, Ingo Weber, Liming Zhu. DevOps: A Software Architect's Perspective. Addison Wesley; ISBN-10
2. Gene Kim Je Humble, Patrick Debois, John Willis. The DevOps Handbook, 1st Edition, IT Revolution Press, 2016.
3. Verona, Joakim Practical DevOps, 1st Edition, Packt Publishing, 2016.
4. Joakim Verona. Practical Devops, Ingram short title; 2nd edition (2018). ISBN10: 1788392574
5. Deepak Gaikwad, Viral Thakkar. DevOps Tools from Practitioner's Viewpoint. Wiley publications. ISBN: 9788126579952

III B. Tech II Semester	RECOMMENDER SYSTEMS	L	T	P	C
		3	0	0	3

Course Objectives:

This course covers the basic concepts of recommender systems, including personalization algorithms, evaluation tools, and user experiences

UNIT-I:

Introduction: Recommender system functions, Linear Algebra notation: Matrix addition, Multiplication, transposition, and inverses, covariance matrices, Understanding ratings, Applications of recommendation systems, Issues with recommender system.

UNIT-II:

Collaborative Filtering: User-based nearest neighbour recommendation, Item-based nearest neighbour recommendation, Model based and pre-processing based approaches, Attacks on collaborative recommender systems.

UNIT-III:

Content-based recommendation: High level architecture of content-based systems, Advantages and drawbacks of content based filtering, Item profiles, discovering features of documents, obtaining item features from tags, representing item profiles, Methods for learning user profiles, Similarity based retrieval, Classification algorithms.

Knowledge based recommendation: Knowledge representation and reasoning, Constraint based recommenders, Case based recommenders.

UNIT-IV:

Hybrid approaches: Opportunities for hybridization, Monolithic hybridization design: Feature combination, Feature augmentation, Parallelized hybridization design: Weighted, Switching, Mixed, Pipelined hybridization design: Cascade Meta-level, Limitations of hybridization strategies.

UNIT-V:

Evaluating Recommender System: Introduction, General properties of evaluation research, Evaluation designs, Evaluation on historical datasets, Error metrics, Decision-Support metrics, User-Centred metrics.

Recommender Systems and communities: Communities, collaboration and recommender systems in personalized web search, Social tagging recommender systems, Trust and recommendations

Text Books:

1. Jannach D., Zanker M. and FelFering A., Recommender Systems: An Introduction, Cambridge University Press(2011), 1st ed.
2. Ricci F., Rokach L., Shapira D., Kantor B.P., Recommender Systems Handbook, Springer(2011), 1st ed.

Reference Books:

1. Manouselis N., Drachsler H., Verbert K., Duval E., Recommender Systems For Learning, Springer (2013), 1st ed.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

III B. Tech II Semester	MEDICAL IMAGE ANALYSIS	L	T	P	C
		3	0	0	3

Course Objectives:

The main objectives of the course are to

- Develop skills in using machine learning and deep learning for medical image analysis.
- Explore applications of medical image data analysis in diagnosis and research.

Unit I:

Introduction to Medical Image Data: Characteristics of Medical Image Data, Modalities in Medical Imaging (X-ray, CT, MRI, PET, etc.), Challenges in Medical Image Analysis, Overview of Image Data Acquisition in Healthcare

Unit II:

Preprocessing and Enhancement in Medical Imaging: Image Denoising and Filtering Techniques, Contrast Enhancement Methods, Registration and Fusion of Medical Images, Artifact Correction in Medical Images

Unit III:

Machine Learning in Medical Image Analysis: Overview of Machine Learning in Healthcare, Feature Extraction from Medical Images, Classification and Regression Models for Medical Image Analysis, Evaluation Metrics in Medical Image Classification

Unit IV:

Deep Learning for Medical Image Analysis: Convolutional Neural Networks (CNNs) for Image Analysis, Transfer Learning in Medical Imaging, Generative Adversarial Networks (GANs) for Medical Image Synthesis, Explainability and Interpretability in Deep Learning Models

Unit V: Applications and Challenges

Disease Diagnosis and Prediction from Medical Images, Computer-Aided Diagnosis (CAD), Image Segmentation in Medical Imaging, Challenges and Ethical Considerations in Medical Image Analysis

Text Books:

1. Medical Image Analysis, Y Alejandro Frangi, Jerry Prince, Milan Sonka
2. Deep Learning for Medical Image Analysis, S. Kevin Zhou

Reference Books:

1. Handbook of Medical Image Processing and Analysis, Isaac N. Bankman

III B. Tech II Semester	SOFTWARE PROJECT MANAGEMENT	L	T	P	C
		3	0	0	3

Course Objectives:

The main objective of the course is to

- Describe and determine the purpose and importance of project management from the perspectives of planning, tracking and completion of project
- Compare and differentiate organization structures and project structures
- Implement a project to manage project schedule, expenses and resources with the application of suitable project management tools

UNIT-I:

Conventional Software Management: The waterfall model, conventional software Management performance.

Evolution of Software Economics: Software Economics, pragmatic software cost estimation.

Improving Software Economics: Reducing Software product size, improving software processes, improving team effectiveness, improving automation, Achieving required quality, peer inspections.

The old way and the new: The principles of conventional software Engineering, principles of modern software management, transitioning to an iterative process.

UNIT-II:

Life cycle phases: Engineering and production stages, inception, Elaboration, construction, transition phases.

Artifacts of the process: The artifact sets, Management artifacts, Engineering artifacts, programmatic artifacts.

UNIT- III:

Model based software architectures: A Management perspective and technical perspective.

Work Flows of the process: Software process workflows, Iteration workflows.

Checkpoints of the process: Major mile stones, Minor Milestones, Periodic status assessments.

Iterative Process Planning: Work breakdown structures, planning guidelines, cost and schedule estimating, Iteration planning process, Pragmatic planning.

UNIT- IV:

Project Organizations and Responsibilities: Line-of-Business Organizations, Project Organizations, evolution of Organizations.

Process Automation: Automation Building blocks, The Project Environment.

Project Control and Process instrumentation: The seven core Metrics, Management indicators, quality indicators, life cycle expectations, pragmatic Software Metrics, Metrics automation.

UNIT-V:

Agile Methodology, ADAPTING to Scrum, Patterns for Adopting Scrum, Iterating towards Agility. **Fundamentals of DevOps:** Architecture, Deployments, Orchestration, Need, Instance of applications, DevOps delivery pipeline, DevOps eco system. DevOps adoption in projects: Technology aspects, Agiling capabilities, Tool stack implementation, People aspect, processes

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Text Books:

1. Software Project Management, Walker Royce, PEA, 2005.
2. Succeeding with Agile: Software Development Using Scrum, Mike Cohn, Addison Wesley.
3. The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations, Gene Kim , John Willis , Patrick Debois , Jez Humble, 1st Edition, O'Reilly publications, 2016.

Reference Books:

1. Software Project Management, Bob Hughes, 3/e, Mike Cotterell, TMH
2. Software Project Management, Joel Henry, PEA
3. Software Project Management in practice, Pankaj Jalote, PEA, 2005,
4. Effective Software Project Management, Robert K. Wysocki, Wiley, 2006.
5. Project Management in IT, Kathy Schwalbe, Cengage

III B .Tech II Semester	MOBILE ADHOC & SENSOR NETWORKS	L	T	P	C
		3	0	0	3

Course Objectives:

The main objectives of the course are to

- Describe the Architecture sensor networks for various application setups.
- Devise appropriate data dissemination protocols and model links cost.
- Introduce the fundamental concepts of wireless sensor networks and basic knowledge of the various protocols at various layers.
- Evaluate the performance of sensor networks and identify bottlenecks

UNIT I:

Introduction to Ad Hoc Wireless Networks- Cellular and Ad Hoc Wireless Networks, Characteristics of MANETs, Applications of MANETs, Issues and Challenges of MANETs, Ad Hoc Wireless Internet, MAC protocols for Ad hoc Wireless Networks-Issues, Design Goals and Classifications of the MAC Protocols.

UNIT II:

Routing Protocols for Ad Hoc Wireless Networks- Issues in Designing a Routing Protocol, Classifications of Routing Protocols, Topology-based versus Position-based Approaches, Issues and design goals of a Transport layer protocol, Classification of Transport layer solutions, TCP over Ad hoc Wireless Networks, Solutions for TCP over Ad Hoc Wireless Networks, Other Transport layer protocols.

UNIT III:

Security protocols for Ad hoc Wireless Networks- Security in Ad hoc Wireless Networks, Network Security Requirements, Issues and Challenges in Security Provisioning, Network Security Attacks, Key Management, Secure Routing in Ad hoc Wireless Networks, Cooperation in MANETs, Intrusion Detection Systems.

UNIT IV:

Basics of Wireless Sensors and Applications- The Mica Mote, Sensing and Communication Range, Design Issues, Energy Consumption, Clustering of Sensors, Applications, Data Retrieval in Sensor Networks-Classification of WSNs, MAC layer, Routing layer, Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs.

UNIT V: Security in WSNs- Security in WSNs, Key Management in WSNs, Secure Data Aggregation in WSNs, Sensor Network Hardware-Components of Sensor Mote, Sensor Network Operating Systems-TinyOS, LA-TinyOS, SOS, RETOS, Imperative LanguagesC, **Dataflow Style Language**-TinyGALS, Node-Level Simulators, NS-2 and its sensor network extension, TOSSIM.

Text Books:

1. Ad Hoc Wireless Networks – Architectures and Protocols, 1st edition, C. Siva Ram Murthy, B. S. Murthy, Pearson Education, 2004
2. Ad Hoc and Sensor Networks – Theory and Applications, 2nd edition *Carlos Corderio Dharma P. Aggarwal*, World Scientific Publications / Cambridge University Press, March 2006

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Reference Books:

1. Wireless Sensor Networks: An Information Processing Approach, 1st edition, *Feng Zhao, Leonidas Guibas*, Elsevier Science imprint, Morgan Kauffman Publishers, 2005, rp2009
2. Wireless Ad hoc Mobile Wireless Networks – Principles, Protocols and Applications, 1st edition, Subir Kumar Sarkar, et al., Auerbach Publications, Taylor & Francis Group, 2008
3. Ad hoc Networking, 1st edition, *Charles E. Perkins*, Pearson Education, 2001
4. Wireless Ad hoc Networking, 1st edition, *Shih-Lin Wu, Yu-Chee Tseng*, Auerbach Publications, Taylor & Francis Group, 2007
5. Wireless Sensor Networks – Principles and Practice, 1st edition, Fei Hu, Xiaojun Cao, An Auerbach book, CRC Press, Taylor & Francis Group, 2010

III B. Tech II Semester	COMPUTER VISION	L	T	P	C
		3	0	0	3

Course Objectives:

The objectives of the course are to introduce the Fundamental Concepts related to sources, shadows and shading and the Geometry of Multiple Views.

UNIT -I:

CAMERAS: Pinhole Cameras Radiometry – Measuring Light: Light in Space, Light Surfaces, Important Special Cases Sources, Shadows, And Shading: Qualitative Radiometry, Sources and Their Effects, Local Shading Models, Application: Photometric Stereo, Interreflections: Global Shading Models Color: The Physics of Color, Human Color Perception, Representing Color, A Model for Image Color, Surface Color from Image Color.

UNIT-II:

Linear Filters: Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates, Edge Detection: Noise, Estimating Derivatives, Detecting Edges Texture: Representing Texture, Analysis (and Synthesis) Using Oriented Pyramids, Application: Synthesis by Sampling Local Models, Shape from Texture.

UNIT-III:

The Geometry of Multiple Views: Two Views Stereopsis: Reconstruction, Human Stereopsis, Binocular Fusion, Using More Cameras Segmentation by Clustering: What Is Segmentation, Human Vision: Grouping and Getstalt, Applications: Shot Boundary Detection and Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering,

UNIT-IV:

Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice, Tracking With Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples

UNIT- V:

Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations **Geometric Camera Calibration:** Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, **Case study:** Mobile Robot Localization Model- Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification, **Case study:** Registration in Medical Imaging Systems, Curved Surfaces and Alignment.

Text Books:

1. David A. Forsyth, Jean Ponce, “Computer Vision – A Modern Approach”, PHI Learning (Indian Edition), 2009.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Reference Books:

1. E. R. Davies, “Computer and Machine Vision – Theory, Algorithms and Practicalities”, Elsevier (Academic Press), 4th edition, 2013.
2. R. C. Gonzalez, R. E. Woods, “Digital Image Processing”, Addison Wesley, 2008.
3. Richard Szeliski “Computer Vision: Algorithms and Applications” Springer, Verlag London Limited, 2011.

III B. Tech II Semester	NOSQL DATABASES	L	T	P	C
		3	0	0	3

Course Objective:

The main objective of this course is to equip individuals with the knowledge and skills to design, manage, and optimize these databases for modern applications

UNIT-I:

Overview and History of NoSQL Databases. Definition of the Four Types of NoSQL Database, The Value of Relational Databases, Getting at Persistent Data, Concurrency, Integration, Impedance Mismatch, Application and Integration Databases, Attack of the Clusters, The Emergence of NoSQL, Key Points.

UNIT-II:

Comparison of relational databases to new NoSQL stores, MongoDB, Cassandra, HBASE, Neo4j use and deployment, Application, RDBMS approach, Challenges NoSQL approach, Key-Value and Document Data Models, Column-Family Stores, Aggregate-Oriented Databases. Replication and sharding, Map Reduce on databases. Distribution Models, Single Server, Sharding, Master-Slave Replication, Peer-to-Peer Replication, Combining Sharding and Replication.

UNIT-III:

NoSQL Key/Value databases using MongoDB, Document Databases, Document oriented Database Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Web Analytics or Real-Time Analytics, E-Commerce Applications, Complex Transactions Spanning Different Operations, Queries against Varying Aggregate Structure.

UNIT-IV:

Column-oriented NoSQL databases using Apache HBASE, Column-oriented NoSQL databases using Apache Cassandra, Architecture of HBASE, Column-Family Data Store Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Counters, Expiring Usage.

UNIT-V:

NoSQL Key/Value databases using Riak, Key-Value Databases, Key-Value Store, Key-Value Store Features, Consistency, Transactions, Query Features, Structure of Data, Scaling, Suitable Use Cases, Storing Session Information, User Profiles, Preferences, Shopping Cart Data, Relationships among Data, Multi operation Transactions, Query by Data, Operations by Sets. Graph NoSQL databases using Neo4, NoSQL database development tools and programming languages, Graph Databases, Graph Database. Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases.

Text Books:

1. Sadalage, P. & Fowler, NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, Wiley Publications, 1st Edition, 2019.

Web References:

1. <https://www.ibm.com/cloud/learn/nosql-databases>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

2. <https://www.coursera.org/lecture/nosql-databases/introduction-to-nosql-VdRNp>
3. <https://www.geeksforgeeks.org/introduction-to-nosql/>
4. <https://www.javatpoint.com/nosql-database>

III B. Tech II Semester	TIME SERIES ANALYSIS	L	T	P	C
		3	0	0	3

Course Objectives: The main objective of the course is to introduce a variety of statistical models for time series and cover the main methods for analyzing these models

Unit I:

Introduction Of Timeseries Analysis: Introduction to Time Series and Forecasting, Different types of data, Internal structures of time series. Models for time series analysis, Autocorrelation and Partial autocorrelation. Examples of Time series Nature and uses of forecasting, Forecasting Process, Data for forecasting, Resources for forecasting

Unit II:

Statistics Background For Forecasting: Graphical Displays, Time Series Plots, Plotting Smoothed Data, Numerical Description of Time Series Data, Use of Data Transformations and Adjustments, General Approach to Time Series Modeling and Forecasting, Evaluating and Monitoring Forecasting Model Performance.

Unit III:

Time Series Regression Model: Introduction Least Squares Estimation in Linear Regression Models, Statistical Inference in Linear Regression, Prediction of New Observations, Model Adequacy Checking, Variable Selection Methods in Regression, Generalized and Weighted Least Squares, Regression Models for General Time Series Data, Exponential Smoothing, First order and Second order

Unit IV:

Autoregressive Integrated Moving Average (Arima)Models: Autoregressive Moving Average (ARMA) Models, Stationarity and Invertibility of ARMA Models, Checking for Stationarity using Variogram, Detecting Nonstationarity, Autoregressive Integrated Moving Average (ARIMA) Models, Forecasting using ARIMA, Seasonal Data, Seasonal ARIMA Models Forecasting using Seasonal ARIMA Models Introduction, Finding the “BEST” Model.

Example: Internet Users Data Model Selection Criteria, Impulse Response Function to Study the Differences in Models Comparing Impulse Response Functions for Competing Models .

Unit V:

Multivariate Time Series Models And Forecasting: Multivariate Time Series Models and Forecasting, Multivariate Stationary Process, Vector ARIMA Models, Vector AR (VAR) Models, Neural Networks and Forecasting Spectral Analysis, Bayesian Methods in Forecasting.

Text Books:

1. Introduction To Time Series Analysis And Forecasting, 2nd Edition, Wiley Series In Probability And Statistics, By Douglas C. Montgomery, Cheryl L. Jen(2015)
2. Master Time Series Data Processing, Visualization, And Modeling Using Python Dr. Avishek PalDr. PksPrakash (2017)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

III B. Tech II Semester	DEEP LEARNING LAB	L	T	P	C
		0	0	3	1.5

Course Objectives:

The main objective of the course is to equip students with practical skills in building and applying deep learning models

Software Packages required:

- Keras
- Tensorflow
- PyTorch

List of Experiments:

1. Implement multi-layer perceptron algorithm for MNIST Handwritten Digit Classification.
2. Design a neural network for classifying movie reviews (Binary Classification) using IMDB dataset.
3. Design a neural Network for classifying news wires (Multi class classification) using Reuters dataset.
4. Design a neural network for predicting house prices using Boston Housing Price dataset.
5. Build a Convolution Neural Network for MNIST Handwritten Digit Classification.
6. Build a Convolution Neural Network for simple image (dogs and Cats) Classification
7. Use a pre-trained convolution neural network (VGG16) for image classification.
8. Implement one hot encoding of words or characters.
9. Implement word embedding's for IMDB dataset.
10. Implement a Recurrent Neural Network for IMDB movie review classification problem.

Text Books:

1. Reza Zadeh and Bharath Ram Sundar, “Tensorflow for Deep Learning”, O’Reilly publishers, 2018

References:

1. <https://github.com/fchollet/deep-learning-with-python-notebooks>

III B. Tech II Semester	DATA VISUALIZATION LAB	L	T	P	C
		0	0	3	1.5

Course Objective: The main objectives of the course are to

- Visualize the different datasets using histograms, line charts, the use of bar charts and box plots, Scatter plots, mosaic plots, different Map visualizations
- Implement advanced graphs such as correlogram, heatmap and 3D graphs.

List of Experiments:

1. a) Load VADeaths(Death Rates in Virginia)dataset in R and visualize the data using different histograms.
b) Load air quality dataset in R and visualize La Guardia Airport's dialy maximum temperature using histogram.
2. Load AirPassengers dataset in R and visualize the data using line chart that shows increase in air passengers over given time period.
3. a) Load iris dataset in R, visualize the data using different Bar Charts and also demonstrate the use of stacked plots.
b) Load air quality dataset in R and visualize ozone concentration in air.
4. a) Load iris dataset in R, visualize the data using different Box plots including group by option and also use color palette to represent species.
b) Load air quality dataset in R and visualize air quality parameters using box plots.
5. Visualize iris dataset using simple scatter, multivariate scatter plot and also visualize scatter plot matrix to visualize multiple variables across each other.
6. Load diamonds dataset in R and visualize the structure in datasets with large data points using hexagon binning and also add color palette then use the
7. Load HairEyeColor dataset in R and plot categorical data using mosaic plot.
8. Load mtcars dataset in R and visualize data using heat map.
9. Install leaflet library in R and perform different map visualizations.
10. Visualize iris dataset using 3d graphs such as scatter3d, cloud, xyplot.
11. Make use of correlogram to visualize data in correlation matrices for iris dataset.
12. Install maps library in R and draw different map visualizations.

Web References:

1. <https://www.analyticsvidhya.com/blog/2015/07/guide-data-visualization-r/>
2. <https://www.geeksforgeeks.org/data-visualization-in-r/>

III B. Tech II Semester	SOFT SKILLS	L	T	P	C
		0	1	2	2

Course Objective: The main objectives of the course are to

- Equip the students with the skills to effectively communicate in English
- Train the students in interview skills, group discussions and presentation skills
- Motivate the students to develop confidence, Enhance the students' interpersonal skills and Improve the students' writing skills

UNIT – I

Analytical Thinking & Listening Skills: Self-Introduction, Shaping Young Minds - A Talk by Azim Premji (Listening Activity), Self – Analysis, Developing Positive Attitude, Perception.

Communication Skills: Verbal Communication; Non Verbal Communication (Body Language)

UNIT – II

Self-Management Skills: Anger Management, Stress Management, Time Management, Six Thinking Hats, Team Building, Leadership Qualities

Etiquette: Social Etiquette, Business Etiquette, Telephone Etiquette, Dining Etiquette

UNIT – III

Standard Operation Methods: Basic Grammars, Tenses, Prepositions, Pronunciation, Letter Writing; Note Making, Note Taking, Minutes Preparation, Email & Letter Writing

UNIT-IV

Job-Oriented Skills: Group Discussion, Mock Group Discussions, Resume Preparation, Interview Skills, Mock Interviews

UNIT-V

Interpersonal relationships: Introduction, Importance, Types, Uses, Factors affecting interpersonal relationships, Accommodating different styles, Consequences of interpersonal relationships

Text books:

1. Barun K. Mitra, Personality Development and Soft Skills, Oxford University Press, 2011.
2. S.P. Dhanavel, English and Soft Skills, Orient Blackswan, 2010.

Reference books:

1. R.S. Aggarwal, A Modern Approach to Verbal & Non-Verbal Reasoning, S. Chand & Company Ltd., 2018.
2. Raman, Meenakshi & Sharma, Sangeeta, Technical Communication Principles and Practice, Oxford University Press, 2011.

E-resources:

1. https://swayam-plus.swayam2.ac.in/courses/course-details?id=P_CAMBR_01

III Year II Semester	TECHNICAL PAPER WRITING & IPR	L	T	P	C
		2	0	0	-

Course Objective: The course will explain the basic related to writing the technical reports and understanding the concepts related to formatting and structuring the report. This will help students to comprehend the concept of proofreading, proposals and practice

Unit I:

Introduction: An introduction to writing technical reports, technical sentences formation, using transitions to join sentences, Using tenses for technical writing.

Planning and Structuring: Planning the report, identifying reader(s), Voice, Formatting and structuring the report, Sections of a technical report, Minutes of meeting writing.

Unit II:

Drafting report and design issues: The use of drafts, Illustrations and graphics.

Final edits: Grammar, spelling, readability and writing in plain English: Writing in plain English, Jargon and final layout issues, Spelling, punctuation and Grammar, Padding, Paragraphs, Ambiguity.

Unit III:

Proofreading and summaries: Proofreading, summaries, Activities on summaries.

Presenting final reports: Printed presentation, Verbal presentation skills, Introduction to proposals and practice.

Unit IV:**Using word processor:**

Adding a Table of Contents, Updating the Table of Contents, Deleting the Table of Contents, Adding an Index, Creating an Outline, Adding Comments, Tracking Changes, Viewing Changes, Additions, and Comments, Accepting and Rejecting Changes , Working with Footnotes and Endnotes, Inserting citations and Bibliography, Comparing Documents, Combining Documents, Mark documents final and make them read only., Password protect Microsoft Word documents., Using Macros,

Unit V:

Nature of Intellectual Property: Patents, Designs, Trade and Copyright.

Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property

Text Books:

1. Kompal Bansal & Parshit Bansal, "Fundamentals of IPR for Beginner's", 1st Ed., BS Publications, 2016.
2. William S. Pfeiffer and Kaye A. Adkins, "Technical Communication: A Practical Approach", Pearson.
3. Ramappa, T., "Intellectual Property Rights Under WTO", 2nd Ed., S Chand, 2015.

Reference Books:

1. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011.
2. Day R, How to Write and Publish a Scientific Paper, Cambridge University Press(2006)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

E-resources:

1. <https://www.udemy.com/course/reportwriting/>
2. <https://www.udemy.com/course/professional-business-english-and-technical-report-writing/>
3. <https://www.udemy.com/course/betterbusinesswriting/>

IV B. Tech I Semester	EXPLORATORY DATA ANALYSIS WITH PYTHON	L	T	P	C
		2	0	2	3

Course Objectives: The main objectives of the course are to

- Introduce the fundamentals of Exploratory Data Analysis, essential exploratory techniques for understanding multivariate data and summarizing it through statistical methods and graphical methods.
- Evaluate the Models and select the best model

UNIT-I: Exploratory Data Analysis Fundamentals: Understanding data science, the significance of EDA, steps in EDA, Making sense of data, Numerical data, Categorical data, Measurement scales, Comparing EDA with classical and Bayesian analysis, Software tools available for EDA, Getting started with EDA.

Sample Experiments:

1. a) Download Dataset from Kaggle using the following link :
<https://www.kaggle.com/datasets/sukhmanibedi/cars4u>
- b) Install python libraries required for Exploratory Data Analysis (numpy, pandas, matplotlib, seaborn)
2. Perform Numpy Array basic operations and Explore Numpy Built-in functions.
3. Loading Dataset into pandas dataframe
4. Selecting rows and columns in the dataframe

UNIT-II: Visual Aids for EDA: Technical requirements, Line chart, Bar charts, Scatter plot using seaborn, Polar chart, Histogram, Choosing the best chart

Case Study: EDA with Personal Email, Technical requirements, Loading the dataset, Data transformation, Data cleansing, Applying descriptive statistics, Data refactoring, Data analysis.

Sample Experiments:

1. Apply different visualization techniques using sample dataset
 - a. Line Chart
 - b. Bar Chart
 - c. Scatter Plots
 - d. Bubble Plot
2. Generate Scatter Plot using seaborn library for iris dataset
3. Apply following visualization Techniques for a sample dataset
 - a. Area Plot
 - b. Stacked Plot
 - c. Pie chart
 - d. Table Chart
4. Generate the following charts for a dataset.
 - a. Polar Chart
 - b. Histogram
 - c. Lollipop chart
5. Case Study: Perform Exploratory Data Analysis with Personal Email Data

UNIT-III: Data Transformation: Merging database-style data frames, Concatenating along with an axis, Merging on index, Reshaping and pivoting, Transformation techniques, Handling missing data, Mathematical operations with NaN, Filling missing values, Discretization and binning, Outlier detection and filtering, Permutation and random sampling, Benefits of data transformation, Challenges.

Sample Experiments:

1. Perform the following operations
 - a) Merging Dataframes
 - b) Reshaping with Hierarchical Indexing
 - c) Data Deduplication
 - d) Replacing Values
2. Apply different Missing Data handling techniques
 - a) NaN values in mathematical Operations
 - b) Filling in missing data
 - c) Forward and Backward filling of missing values
 - d) Filling with index values
 - e) Interpolation of missing values
3. Apply different data transformation techniques

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

- a) Renaming axis indexes
- b) Discretization and Binning
- c) Permutation and Random sampling
- d) Dummy variables

UNIT-IV: Descriptive Statistics: Distribution function, Measures of central tendency, Measures of dispersion, Types of kurtosis, Calculating percentiles, Quartiles, Grouping Datasets, Correlation, Understanding univariate, bivariate, multivariate analysis, Time Series Analysis

Sample Experiments:

1. Study the following Distribution Techniques on a sample data
 - a) Uniform Distribution
 - b) Normal Distribution
 - c) Gamma Distribution
 - d) Exponential Distribution
 - e) Poisson Distribution
 - f) Binomial Distribution
2. Perform Data Cleaning on a sample dataset.
3. Compute measure of Central Tendency on a sample dataset
 - a) Mean
 - b) Median
 - c) Mode
4. Explore Measures of Dispersion on a sample dataset
 - a) Variance
 - b) Standard Deviation
 - c) Skewness
 - d) Kurtosis
5. a) Calculating percentiles on sample dataset
 - b) Calculate Inter Quartile Range(IQR) and Visualize using Box Plots
6. Perform the following analysis on automobile dataset.
 - a) Bivariate analysis
 - b) Multivariate analysis
7. Perform Time Series Analysis on Open Power systems dataset

UNIT-V: Model Development and Evaluation: Unified machine learning workflow, Data preprocessing, Data preparation, Training sets and corpus creation, Model creation and training, Model evaluation, Best model selection and evaluation, Model deployment

Case Study: EDA on Wine Quality Data Analysis

Sample Experiments:

1. Perform hypothesis testing using stats models library
 - a) Z-Test
 - b) T-Test
2. Develop model and Perform Model Evaluation using different metrics such as prediction score, R2 Score, MAE Score, MSE Score.
3. Case Study: Perform Exploratory Data Analysis with Wine Quality Dataset

Text Book:

1. Suresh Kumar Mukhiya, Usman Ahmed, Hands-On Exploratory Data Analysis with Python, Packt Publishing, 2020.

Reference Books:

1. Ronald K. Pearson, Exploratory Data Analysis Using R, CRC Press, 2020
2. Radhika Datar, Harish Garg, Hands-On Exploratory Data Analysis with R: Become an expert in exploratory data analysis using R packages, 1st Edition, Packt Publishing, 2019

Web References:

1. <https://github.com/PacktPublishing/Hands-on-Exploratory-Data-Analysis-with-Python>
2. <https://www.analyticsvidhya.com/blog/2022/07/step-by-step-exploratory-data-analysis-eda-using-python/#h-conclusion>
3. <https://github.com/PacktPublishing/Exploratory-Data-Analysis-with-Python-Cookbook>

IV Year I Semester	HUMAN RESOURCES & PROJECT MANAGEMENT	L	T	P	C
		2	0	0	2

Course Objectives: The main objectives of the course are to

- Provide knowledge about HR planning, recruitment, selection, and job design.
- Develop skills in managing HR functions such as performance appraisal, compensation, and employee relations.
- Emphasize the importance of ethical practices and HR audits in maintaining organizational health.
- Understand the HRD framework and its impact on organizational success.
- Improve group interaction and team dynamics for better collaboration and performance.
- Understand the Fundamentals of Project Management and Project Networks
- Implement appropriate management strategies tailored to specific challenges in different project types.

UNIT –I:

HRM: Nature, Scope, Concept of HRM, Functions of HRM, Role of HR manager, emerging trends in HRM, E-HRM, HR audit models, ethical aspects of HRM. HR Planning, Demand and Supply forecasting of HR, Job Design, Recruitment, Sources of recruitment, Selection-Selection Procedure.

UNIT –II:

HRD, HR accounting, Models, Concept of Training and Development, Methods of Training. Performance Appraisal: Importance Methods of performance appraisal, Career Development and Counseling, group interaction.

UNIT –III:

Basics of Project Management, Concept, resource management, Project environment, Types of Projects, project networks-DPR, Project life cycle, Project proposals, Monitoring project progress, Project appraisal and Project selection, 80-20 rules, production technology, communication matrix

UNIT-IV:

Identify various project types and their unique management challenges and apply appropriate management strategies for each. Project Implementation and Review: Forms of project organization, project planning, project control, human aspects of project management, prerequisites for successful project implementation, project review, performance evaluation, abandonment analysis

UNIT-V:

Project Implementation and Review: Forms of project organization, project planning, project control, human aspects of project management, prerequisites for successful project implementation, project review, performance evaluation, abandonment analysis

Text Books:

1. Robert L. Mathis, John H. Jackson, Manas Ranjan Tripathy, Human Resource Management, Cengage Learning 2016.
2. Sharon Pande and Swapnalekha Basak, Human Resource Management, Text and Cases, Vikas Publishing, 2e, 2016.
3. Stewart R. Clegg, Torgeir Skyttermoen, Anne Live Vaagaasar, Project Management,

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Sage Publications, 1e, 2021.

4. K. Nagarajan, Project Management, New Age International Publishers, 8e, 2017.

Reference Books :

1. Subba Rao P, "Personnel and Human Resource Management-Text and Cases", Himalaya Publications, Mumbai, 2013.
2. K Aswathappa, "Human Resource and Personnel Management", Tata McGraw Hill, New Delhi, 2013.
3. Prasanna Chandra, "Projects, Planning, Analysis, Selection, Financing, Implementation and Review", Tata McGraw Hill Company Pvt. Ltd., New Delhi, 1998.
4. Vasanth Desai, "Project Management", 4th edition, Himalaya Publications, 2018.
5. LalithaBalakrishnan, Gowri, "Project Management", Himalaya publishing house, New Delhi, 2022.

IV Year I Semester	RESPONSIBLE AI	L	T	P	C
		3	0	0	3

Course Objective:

The main objectives of the course are to introduce AI basics, misconceptions, responsible AI principles, challenges in implementation, biases in AI, fairness metrics, mitigation techniques, explainability, challenges, methods, and evaluation for interpretable machine learning models.

UNIT-I:

Introduction to Responsible AI: Overview of AI, Common misconception of AI, Introduction to Responsible AI, Characteristics of Responsible AI, Key principles of responsible AI, Challenges in implementing responsible AI, ELSI. Framework and AI, Safety and Alignment, Fairness and Privacy.

UNIT-II:

Fairness and Bias: Human Bias, Types of biases, Effects of biases on different demographics, Bias vs Fairness, Sources of Biases, Exploratory data analysis, Bias Mitigation Techniques, Pre-processing techniques, In- processing techniques, Post-processing techniques, Bias detection tools, Overview of fairness in AI, Demographic parity, Equalized odds, Simpson's paradox and the risks of multiple testing, Group fairness and Individual fairness, Counterfactual fairness, Fairness metrics, Bias and disparity mitigation with Fairlearn.

UNIT-III:

Explainability & Interpretability: Importance of Explainability and Interpretability, Challenges, Interpretability through simplification and visualization, Intrinsic interpretable methods, Post Hoc interpretability, Interpretability Evaluation methods, Explainability through causality, Model agnostic Interpretation, LIME (Local Interpretable Model-agnostic Explanations), SHAP (SHapley Additive exPlanations).

UNIT-IV:

Safety, Security and Privacy: Overview of safety, security, privacy, resilience, Taxonomy of AI safety and Security, Adversarial attacks and mitigation, Model and data security, The ML life cycle, Adopting an ML life cycle MLOps and ModelOps, Model drift, Data drift, Concept drift, Privacy-preserving AI techniques, Differential privacy, Federated learning.

UNIT-V:

Case Studies : COMPAS Algorithm, Google Photos Tagging Controversy, ProPublica's Analysis of Recidivism Predictions, Amazon's AI Recruiting Tool, Facial Recognition Technology Misidentification, AI in Healthcare: Predictive Analytics in Patient Care, Tesla Autopilot and Ethical Implications of Autonomous Vehicles.

Text Books:

1. Virginia Dignum, "Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way", 2019.
2. Adnan Masood, Heather Dawe, "Responsible AI in the Enterprise", 2023.
3. BeenaAmmanath, "Trustworthy AI", O' Reilly, 2022.
4. Christoph Molnar "Interpretable Machine Learning", 1st edition, 2019.

IV Year I Semester	BLOCKCHAIN TECHNOLOGY	L	T	P	C
		3	0	0	3

Course Objectives: The objectives of the course are to

- Describe the fundamentals of Block Chain and various types of block chain and consensus mechanism.
- Understand public block chain system, Private block chain system and consortium block chain.
- Introduce the security issues of blockchain technology.

UNIT – I:

Fundamentals of Blockchain: Introduction, Origin of Blockchain, Blockchain Solution, Components of Blockchain, Block in a Blockchain, The Technology and the Future.

Blockchain Types and Consensus Mechanism: Introduction, Decentralization and Distribution, Types of Blockchain, Consensus Protocol.

Cryptocurrency: Bitcoin, Altcoin and Token: Introduction, Bitcoin and the Cryptocurrency, Cryptocurrency Basics, Types of Cryptocurrencies, Cryptocurrency Usage.

UNIT – II:

Public Blockchain System: Introduction, Public Blockchain, Popular Public Blockchains, The Bitcoin Blockchain, EthereumBlockchain.

Smart Contracts: Introduction, Smart Contract, Characteristics of a Smart Contract, Types of Smart Contracts, Types of Oracles, Smart Contracts in Ethereum, Smart Contracts in Industry.

UNIT – III:

Private Blockchain System: Introduction, Key Characteristics of Private Blockchain, Private Blockchain, Private Blockchain Examples, Private Blockchain and Open Source, E-commerce Site Example, Various Commands (Instructions) in E-commerce Blockchain, Smart Contract in Private Environment, State Machine, Different Algorithms of Permissioned Blockchain, Byzantine Fault, Multichain.

Consortium Blockchain: Introduction, Key Characteristics of Consortium Blockchain, Need of Consortium Blockchain, Hyperledger Platform, Overview of Ripple, Overview of Corda.

Initial Coin Offering: Introduction, Blockchain Fundraising Methods, Launching an ICO, Investing in an ICO, Pros and Cons of Initial Coin Offering, Successful Initial Coin Offerings, Evolution of ICO, ICO Platforms.

UNIT – IV:

Security in Blockchain: Introduction, Security Aspects in Bitcoin, Security and Privacy Challenges of Blockchain in General, Performance and Scalability, Identity Management and Authentication, Regulatory Compliance and Assurance, Safeguarding Blockchain Smart Contract (DApp), Security Aspects in Hyperledger Fabric.

Applications of Blockchain: Introduction, Blockchain in Banking and Finance, Blockchain in Education, Blockchain in Energy, Blockchain in Healthcare, Blockchain in Real-estate, Blockchain in Supply Chain, The Blockchain and IoT. Limitations and Challenges of Blockchain.

UNIT – V:

Blockchain Case Studies:

Case Study 1 – Retail,

Case Study 2 – Banking and Financial Services,

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Case Study 3 – Healthcare,

Case Study 4 – Energy and Utilities.

Blockchain Platform using Python: Introduction, Learn How to Use Python Online Editor, Basic Programming Using Python, Python Packages for Blockchain.

Blockchain platform using Hyperledger Fabric: Introduction, Components of Hyperledger Fabric Network, Chain codes from Developer.ibm.com, Blockchain Application Using Fabric Java SDK.

Text book:

1. “Blockchain Technology”, Chandramouli Subramanian, Asha A.George, Abhilash K A, MeenaKarthikeyan , Universities Press.

Reference Books:

1. Blockchain Blueprint for Economy, Melanie Swan, SPD O'Reilly.
2. Blockchain for Business, Jai Singh Arun, Jerry Cuomo, Nitin Gaur, Pearson Addison Wesley

IV Year I Semester	QUANTUM COMPUTING	L	T	P	C
		3	0	0	3

Course Objectives:

To introduce the fundamentals of quantum computing, the problem-solving approach using finite dimensional mathematics

UNIT - I

Introduction to Quantum Computing: Bits Vs Qubits, Classical Vs Quantum logical operations, Hilbert space, Probabilities and measurements, Superposition, Entanglement, No cloning theorem, density operators and other quantum mechanical principles.

UNIT - II

Qubit: Quantum unit of information and its physical implementations. Bloch Sphere concept, Quantum Gates and Circuits: single qubit gates, multiple qubit gates, Bell states, design of basic quantum circuits.

UNIT - III

Quantum Algorithms: Realization of classical computation on quantum computers and simulator. Classical and quantum complexity theory. Quantum Parallelism, Quantum amplitude amplification, Quantum Phase Estimation methods.

UNIT - IV

Quantum Algorithms: Deutsch's and Deutsch-Jozsa algorithm, Grover's Search Algorithm, Simon's Algorithm, Bernstein-Vazirani Algorithm, Shor's Factorization Algorithm.

UNIT - V

Quantum Information & Cryptography: Comparison between classical and quantum information theory. Super dense coding protocol, Quantum teleportation, Quantum Cryptography, Quantum Key Distribution - BB84, Ekert 91 Protocol.

Text Books:

1. Quantum Computation and Quantum Information, Nielsen M. A., Cambridge
2. Programming Quantum Computers, Essential Algorithms and Code Samples, Eric R Johnson, Nic Harrigan, Mercedes Ginemo, Segovia, O'Reilly

Reference Books:

1. Quantum Computing for Computer Scientists, Noson S. Yanofsky, Mirco A. Mannucci
2. Principles of Quantum Computation and Information, Benenti G., Casati G. and Strini G., Vol. I: Basic Concepts, Vol. II
3. Basic Tools and Special Topics, World Scientific. Pittenger A. O., An Introduction to Quantum Computing Algorithms

IV Year I Semester	ROBOTIC PROCESS AUTOMATION	L	T	P	C
		3	0	0	3

Course Objectives:

The main objective of the course is to equip learners with the knowledge and skills to automate repetitive, rule-based tasks using software robots

UNIT-I:

Introduction To Robotic Process Automation: Scope and techniques of automation, Robotic process automation, What can RPA do, Benefits of RPA, Components of RPA, RPA platforms, The future of automation.

RPA Basics: History of Automation, RPA, RPA vs Automation, Processes & Flowcharts, Programming Constructs in RPA, What Processes can be Automated, Types of Bots, Workloads which can be automated, RPA Advanced Concepts, Standardization of processes, RPA Development methodologies, Difference from SDLC, Robotic control, flow architecture, RPA business case, RPA Team, Process Design Document/Solution Design Document, Industries best suited for RPA, Risks & Challenges with RPA, RPA and emerging ecosystem.

UNIT-II :

RPA Tool Introduction and Basics: Introduction to RPA Tool, The User Interface, Variables, Managing Variables, Naming Best Practices, The Variables Panel, Generic Value Variables, Text Variables, True or False Variables, Number Variables, Array Variables, Date and Time Variables, Data Table Variables, Managing Arguments, Naming Best Practices, The Arguments Panel, Using Arguments, About Imported Namespaces, Importing New Namespaces, Control Flow, Control Flow Introduction, If Else Statements, Loops, Advanced Control Flow, Sequences, Flowcharts, About Control Flow, Control Flow Activities, The Assign Activity, The Delay Activity, The Do While Activity, The If Activity, The Switch Activity, The While Activity, The For Each Activity, The Break Activity, Data Manipulation: Data Manipulation Introduction, Scalar variables, collections and Tables, Text Manipulation, Data Manipulation, Gathering and Assembling Data

UNIT-III :

Advanced Automation Concepts & Techniques: Recording Introduction, Basic and Desktop Recording, Web Recording, Input/Output Methods, Screen Scraping, Data Scraping, Scraping advanced techniques, Selectors, Defining and Assessing Selectors, Customization, Debugging, Dynamic Selectors, Partial Selectors, RPA Challenge, Image, Text & Advanced Citrix Automation, Introduction to Image & Text Automation, Image based automation, Keyboard based automation, Information Retrieval, Advanced Citrix Automation challenges, Best Practices, Using tab for Images, Starting Apps, Excel Data, Tables & PDF, Data Tables in RPA, Excel and Data Table basics, Data Manipulation in excel, Extracting Data from PDF, Extracting a single piece of data, Anchors, Using anchors in PDF.

UNIT-IV :

Handling User Events & Assistant Bots, Exception Handling: What are assistant bots, Monitoring system event triggers, Hotkey trigger, Mouse trigger, System trigger, Monitoring image and element triggers, An example of monitoring email, Example of monitoring a copying event and blocking it, Launching an assistant bot on a keyboard event.

Exception Handling: Debugging and Exception Handling, Debugging Tools, Strategies for solving issues, Catching errors.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

UNIT-V:

Deploying and Maintaining The Bot: Publishing using publish utility, Creation of Server, Using Server to control the bots, Creating a provision Robot from the Server, Connecting a Robot to Server, Deploy the Robot to Server, Publishing and managing updates, Managing packages, Uploading packages, Deleting packages

Text Books:

1. Alok Mani Tripathi, “Learning Robotic Process Automation”, Packt Publishing, 2018.

Reference Books:

1. Frank Casale , Rebecca Dilla, Heidi Jaynes , Lauren Livingston, “Introduction to Robotic Process Automation: a Primer”, Institute of Robotic Process Automation,1st Edition 2015.
2. Richard Murdoch, Robotic Process Automation: Guide To Building Software Robots, Automate Repetitive Tasks & Become An RPA Consultant”, Independently Published, 1st Edition 2018.
3. Srikanth Merianda,”Robotic Process Automation Tools, Process Automation and their benefits: Understanding RPA and Intelligent Automation”, Consulting Opportunity Holdings LLC, 1st Edition 2018.
4. Lim Mei Ying, “Robotic Process Automation with Blue Prism Quick Start Guide: Create software robots and automate business processes”, Packt Publishing, 1st Edition 2018.

Web References:

1. <https://www.uipath.com/rpa/robotic-process-automation>
2. <https://www.academy.uipath.com>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

IV Year I Semester	SOCIAL MEDIA ANALYSIS	L	T	P	C
		3	0	0	3

Course Objectives:

The main objective of this course is to provide knowledge on social media and its analytics Course

Unit I:

Introduction To Social Media World Wide Web, Web 1.0, Web 2.0, Web 3.0, Social Media, Core Characteristics Of Social Media, Types Of Social Media, Social Networking Sites, Using Facebook For Business Purposes, Content Communities

Unit- II:

Social Media Analytics Overview Purpose Of Social Media Analytics, Social Media Vs. Traditional Business Analytics, Seven Layers Of Social Media Analytics, Types Of Social Media Analytics, Social Media Analytics Cycle, Challenges To Social Media Analytics, Social Media Analytics Tools. Case Study: The Underground Campaign That Scored Big

Unit III:

Social Media Text Analytics Types Of Social Media Text, Purpose Of Text Analytics, Steps In Text Analytics, Social Media Text Analysis Tools. Case Study: Tapping Into Online Customer Opinions

Unit IV:

Social Media Actions Analytics Introduction To Actions Analytics, Common Social Media Actions, Actions Analytics Tools. Case Study: Cover-More Group

Unit V:

Social Media Hyperlink Analytics Types Of Hyperlinks, Hyperlink Analytics, Types Of Hyperlink Analytics, Hyperlink Analytics Tools. Case Study: Hyperlinks And Viral YouTube Videos

Text Books:

1. Seven Layers Of Social Media Analytics Mining Business Insights From Social Media Text, Actions, Networks, Hyperlinks, Apps, Search Engine, And Location Data By Gohar F. Khan ISBN: 1507823207, ISBN-13: 9781507823200

Reference Books:

1. Social Media Analytics: Techniques And Insights For Extracting Business Value Out Of Social Media By Matthew Ganis, Avinash Kohirkar, Pearson Education.
2. Social Media Analytics: Effective Tools for Building, Interpreting, and Using Metrics, Marshall Sponder, MGH.
3. Big Data And Analytics, Seema Acharya, Subhasinin Chellappan, Wiley Publications.
4. Big Data, Black Book tm , Dreamtech Press, 2015 Edition.

IV Year I Semester	AGILE METHODOLOGIES	L	T	P	C
		3	0	0	3

Course Objectives:

The main objectives of this course are to

- Introduce the important concepts of Agile software development Process
- Emphasize the role of stand-up meetings in software collaboration
- Impart the knowledge on values and principles in understanding agility

UNIT I :

Learning Agile: Agile, Getting Agile into your brain, Understanding Agile values, No Silver Bullet, Agile to the Rescue. A fractured perspective, The Agile Manifesto, Understanding the Elephant, Where to Start with a New Methodology.

UNIT II :

The Agile Principles: The 12 Principles of Agile Software, The Customer Is Always Right, Delivering the Project, Better Project Delivery for the Ebook Reader Project. Communicating and Working Together, Project Execution—Moving the Project Along, Constantly Improving the Project and the Team. The Agile Project: Bringing All the Principles Together

UNIT III :

SCRUM and Self-Organizing Teams: The Rules of Scrum, Act I: I Can Haz Scrum, Everyone on a Scrum Team owns the Project, Status Updates Are for Social Networks!, The Whole Team Uses the Daily Scrum, Feedback and the Visibility-Inspection-Adaptation Cycle, The Last Responsible Moment, Sprinting into a Wall, Sprints, Planning, and Retrospectives.

Scrum Planning And Collective Commitment: Not Quite Expecting the Unexpected, User Stories, Velocity, and Generally Accepted Scrum Practices, Victory Lap, Scrum Values Revisited.

UNIT IV :

XP And Embracing Change: Going into Overtime, The Primary Practices of XP, The Game Plan Changed, but We're Still Losing, The XP Values Help the Team Change Their Mindset, An Effective Mindset Starts with the XP Values, The Momentum Shifts, Understanding the XP Principles Helps You Embrace Change.

XP, Simplicity, and Incremental Design: Code and Design, Make Code and Design Decisions at the Last Responsible Moment, Final Score.

UNIT V:

Lean, Eliminating Waste, and Seeing the whole: Lean Thinking, Creating Heroes and Magical Thinking. Eliminate Waste, Gain a Deeper Understanding of the Product, Deliver As Fast As Possible.

Kanban, Flow, and Constantly Improving: The Principles of Kanban, Improving Your Process with Kanban, Measure and Manage Flow, Emergent Behavior with Kanban.

The Agile Coach: Coaches Understand Why People Don't Always Want to Change. The Principles of Coaching.

Text Books :

1. Andrew Stellman, Jill Alison Hart, Learning Agile, O'Reilly, 2015.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Reference Books:

1. Andrew Stellman, Jennifer Green, Head first Agile, O'Reilly, 2017.
2. Rubin K , Essential Scrum : A Practical Guide To The Most Popular Agile Process, Addison-Wesley, 2013

IV Year I Semester	BIG DATA ANALYTICS	L	T	P	C
		3	0	0	3

Course Objectives: This course is aimed at enabling the students to

- Provide an overview of an exciting growing field of big data analytics.
- Introduce the tools required to manage and analyze big data like Hadoop, NoSQL, Map Reduce, HIVE, Cassandra, Spark.
- Teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
- Optimize business decisions and create competitive advantage with Big Data analytics

UNIT I:

Big data, convergence of key trends, unstructured data, industry examples of big data, web analytics, big data and marketing, fraud and big data, risk and big data, credit risk management, big data and algorithmic trading, big data and healthcare, big data in medicine, advertising and big data, big data technologies, introduction to Hadoop, open source technologies, cloud and big data, mobile business intelligence, Crowd sourcing analytics, inter and trans firewall analytics.

UNIT II:

Introduction to NoSQL, aggregate data models, aggregates, key-value and document data models, relationships, graph databases, schema less databases, materialized views, distribution models, sharding, master-slave replication, peer- peer replication, sharding and replication, consistency, relaxing consistency, version stamps, Working with Cassandra ,Table creation, loading and reading data.

UNIT III:

Data formats, analyzing data with Hadoop, scaling out, Architecture of Hadoop distributed file system (HDFS), fault tolerance ,with data replication, High availability, Data locality , Map Reduce Architecture, Process flow, Java interface, data flow, Hadoop I/O, data integrity, compression, serialization. Introduction to Hive, data types and file formats, HiveQL data definition, HiveQL data manipulation, Logical joins, Window functions, Optimization, Table partitioning, Bucketing, Indexing, Join strategies.

UNIT IV:

Apache spark- Advantages over Hadoop, lazy evaluation, In memory processing, DAG, Spark context, Spark Session, RDD, Transformations- Narrow and Wide, Actions, Data frames ,RDD to Data frames, Catalyst optimizer, Data Frame Transformations, Working with Dates and Timestamps, Working with Nulls in Data, Working with Complex Types, Working with JSON, Grouping, Window Functions, Joins, Data Sources, Broadcast Variables, Accumulators, Deploying Spark- On-Premises Cluster Deployments, Cluster Managers- Standalone Mode, Spark on YARN , Spark Logs, The Spark UI- Spark UI History Server, Debugging and Spark First Aid

UNIT V:

Spark-Performance Tuning, Stream Processing Fundamentals, Event-Time and State full Processing - Event Time, State full Processing, Windows on Event Time- Tumbling Windows, Handling Late Data with Watermarks, Dropping Duplicates in a Stream, Structured Streaming Basics - Core Concepts, Structured Streaming in Action, Transformations on Streams, Input and Output.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Text Books:

1. Big Data, Big Analytics: Emerging, Michael Minnelli, Michelle Chambers, and AmbigaDhiraj, 1st edition ,2013
2. SPARK: The Definitive Guide, Bill Chambers & Matei Zaharia, O'Reilley, 2018-first Edition.
3. Business Intelligence and Analytic Trends for Today's Businesses", Wiley, First edition-2013.
4. P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World Polyglot Persistence", Addison-Wesley Professional, 2012
5. Tom White, "Hadoop: The Definitive Guide", Third Edition, O'Reilley, 2012

Reference Books:

1. "Hadoop Operations", O'Reilley, Eric Sammer, First Edition -2012.
2. "Programming Hive", O'Reilley, E. Capriolo, D. Wampler, and J. Rutherglen, 2012.
3. "HBase: The Definitive Guide", O'Reilley, Lars George, September 2011: First Edition..
4. "Cassandra: The Definitive Guide", O'Reilley, Eben Hewitt, 2010.
5. "Programming Pig", O'Reilley, Alan Gates, October 2011: First Edition

IV Year I Semester	AUGMENTED REALITY & VIRTUAL REALITY	L	T	P	C
		3	0	0	3

Objectives: The objectives of the course are to

- Provide a foundation to the fast growing field of AR and make the students aware of the various AR concepts.
- Give historical and modern overviews and perspectives on virtual reality.

UNIT – I:

Introduction to Augmented Reality: Augmented Reality, Defining augmented reality, history of augmented reality, Examples, Related fields

Displays: Multimodal Displays, Visual Perception, Requirements and Characteristics, Spatial Display Model, Visual Displays

Tracking: Tracking, Calibration, and Registration, Coordinate Systems, Characteristics of Tracking Technology, Stationary Tracking Systems, Mobile Sensors

UNIT – II:

Computer Vision for Augmented Reality: Marker Tracking, Multiple-Camera Infrared Tracking, Natural Feature Tracking by Detection, Outdoor Tracking.

Interaction: Output Modalities, Input Modalities, Tangible Interfaces, Virtual User Interfaces on Real Surfaces, Augmented Paper, Multi-view Interfaces, Haptic Interaction

Software Architectures: AR Application Requirements, Software Engineering Requirements, Distributed Object Systems, Dataflow, Scene Graphs

UNIT – III:

Introduction to Virtual Reality: Defining Virtual Reality, History of VR, Human Physiology and Perception

The Geometry of Virtual Worlds: Geometric Models, Axis-Angle Representations of Rotation, Viewing Transformations

Light and Optics: Basic Behavior of Light, Lenses, Optical Aberrations, The Human Eye, Cameras, Displays

UNIT – IV:

The Physiology of Human Vision: From the Cornea to Photoreceptors, From Photoreceptors to the Visual Cortex, Eye Movements, Implications for VR

Visual Perception: Visual Perception - Perception of Depth, Perception of Motion,

Perception of Color Visual Rendering: Visual Rendering -Ray Tracing and Shading Models, Rasterization, Correcting Optical Distortions, Improving Latency and Frame Rates, Immersive Photos and Videos

UNIT – V:

Motion in Real and Virtual Worlds: Velocities and Accelerations, The Vestibular System, Physics in the Virtual World, Mismatched Motion and Vection

Interaction: Motor Programs and Remapping, Locomotion, Social Interaction

Audio: The Physics of Sound, The Physiology of Human Hearing, Auditory Perception, Auditory Rendering

Text Books:

1. “Augmented Reality: Principles & Practice”, Schmalstieg, Hollerer, Pearson Education India; First edition (12 October 2016), ISBN-10: 9332578494
2. Virtual Reality, Steven M. LaValle, Cambridge University Press, 2016

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Reference Books:

1. “AR Game Development”, Allan Fowler, 1st Edition, Apress Publications, 2018, ISBN 978-1484236178
2. “Understanding Virtual Reality: Interface, Application and Design”, William R Sherman and Alan B Craig, (The Morgan Kaufmann Series in Computer Graphics”). Morgan Kaufmann Publishers, San Francisco, CA, 2002
3. “Developing Virtual Reality Applications: Foundations of Effective Design”, Alan B Craig, William R Sherman and Jeffrey D Will, Morgan Kaufmann, 2009
4. “Designing for Mixed Reality”, Kharis O'Connell, O'Reilly Media, Inc., 2016, ISBN:9781491962381
5. “Theory and applications of marker-based augmented reality”, SanniSiltanen, Julkaisija, Utgivare Publisher. 2012. ISBN 978-951-38-7449-0
6. “Designing Virtual Systems: The Structured Approach”, Gerard Jounghyun Kim, 2005

IV Year I Semester	HIGH PERFORMANCE COMPUTING	L	T	P	C
		3	0	0	3

Course Objectives:

The main objectives of the course is to study parallel computing hardware and programming models, performance analysis and modeling of parallel programs

Unit I:**Introduction:**

Motivating Parallelism, Scope of Parallel Computing, Parallel Programming Platforms: Implicit Parallelism, Trends in Microprocessor and Architectures, Limitations of Memory, System Performance, Dichotomy of Parallel Computing Platforms, Physical Organization of Parallel Platforms, Communication Costs in Parallel Machines, Scalable design principles, Architectures: N-wide superscalar architectures, Multi-core architecture.

Unit II:**Parallel Programming :**

Principles of Parallel Algorithm Design: Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing, Methods for Containing Interaction Overheads, Parallel Algorithm Models, The Age of Parallel Processing, the Rise of GPU Computing, A Brief History of GPUs, Early GPU.

Unit III:**Basic Communication:**

Operations- One-to-All Broadcast and All-to-One Reduction, All-to-All Broadcast and Reduction, All-Reduce and Prefix-Sum Operations, Scatter and Gather, All-to-All Personalized Communication, Circular Shift, Improving the Speed of Some Communication Operations. Programming shared address space platforms: threads- basics, synchronization, OpenMP programming

Unit IV:

Analytical Models: Sources of overhead in Parallel Programs, Performance Metrics for Parallel Systems, and The effect of Granularity on Performance, Scalability of Parallel Systems, Minimum execution time and minimum cost, optimal execution time. Dense Matrix Algorithms: MatrixVectorMultiplication, Matrix-Matrix Multiplication.

Unit V:

Parallel Algorithms- Sorting and Graph : Issues in Sorting on Parallel Computers, Bubble Sort and its Variants, Parallelizing Quick sort, All-Pairs Shortest Paths, Algorithm for sparse graph, Parallel Depth-First Search, Parallel BestFirst Search.

CUDA Architecture :CUDA Architecture, Using the CUDA Architecture, Applications of CUDA Introduction to CUDA C-Write and launch CUDA C kernels, Manage GPU memory, Manage communication and synchronization, Parallel programming in CUDA- C.

Text Books:

1. AnanthGrama, Anshul Gupta, George Karypis, and Vipin Kumar, "Introduction to Parallel Computing", 2nd edition, Addison-Wesley, 2003, ISBN: 0-201-64865-2
2. Jason Sanders, Edward Kandrot, "CUDA by Example", Addison-Wesley, ISBN-13: 978-0-13-138768-3

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Reference Books :

1. Kai Hwang, "Scalable Parallel Computing", McGraw Hill 1998, ISBN:0070317984
2. Shane Cook, "CUDA Programming: A Developer's Guide to Parallel Computing with GPUs", Morgan Kaufmann Publishers Inc. San Francisco, CA, USA 2013 ISBN: 9780124159884
3. David Culler Jaswinder Pal Singh, "Parallel Computer Architecture: A Hardware/Software Approach", Morgan Kaufmann,1999, ISBN 978-1-55860-343-1
4. Rod Stephens, "Essential Algorithms", Wiley, ISBN: 978-1-118-61210-1

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

IV Year I Semester	Reinforcement Learning	L	T	P	C
		3	0	0	3

Course Objective:

The main objective of the course is to provide the fundamentals of Reinforcement learning and its applications.

UNIT-I

The Reinforcement Learning Problem: Reinforcement Learning, Examples, Elements of Reinforcement Learning, Limitations and Scope, An Extended Example: Tic-Tac-Toe, Summary, History of Reinforcement Learning.

UNIT-II

Multi-arm Bandits: An n-Armed Bandit Problem, Action-Value Methods, Incremental Implementation, Tracking a Nonstationary Problem, Optimistic Initial Values, Upper-Confidence-Bound Action Selection, Gradient Bandits, Associative Search (Contextual Bandits)

UNIT-III

Finite Markov Decision Processes: The Agent–Environment Interface, Goals and Rewards, Returns, Unified Notation for Episodic and Continuing Tasks, The Markov Property, Markov Decision Processes, Value Functions, Optimal Value Functions, Optimality and Approximation.

UNIT-IV

Monte Carlo Methods: Monte Carlo Prediction, Monte Carlo Estimation of Action Values, Monte Carlo Control, Monte Carlo Control without Exploring Starts, Off-policy Prediction via Importance Sampling, Incremental Implementation, Off-Policy Monte Carlo Control, Importance Sampling on Truncated Returns

UNIT-V

Applications and Case Studies: TD-Gammon, Samuel’s Checkers Player, The Acrobot, Elevator Dispatching, Dynamic Channel Allocation, Job-Shop Scheduling.

Text Books:

1. Richard S. Sutton and Andrew G. Barto, “Reinforcement Learning-An Introduction”, 2nd Edition, The MIT Press, 2018
2. Marco Wiering , Martijn van Otterlo Reinforcement Learning: State-of-the-Art (Adaptation, Learning, and Optimization (12)) 2012th Edition

Reference Books:

1. Vincent François-Lavet , Peter Henderson , Riashat Islam, An Introduction to Deep Reinforcement Learning (Foundations and Trends(r) in Machine Learning) , 2019

IV Year I Semester	PROMPT ENGINEERING (Skill Enhancement Course)	L	T	P	C
		0	1	2	2

Course Objectives:

The main objectives of the course are to

- Apply iterative prompting for clarity and context.
- Create varied prompts to steer model outputs.
- Construct chain-of-thought and structured prompts.
- Develop retrieval-augmented pipelines to ground outputs.
- Evaluate LLM agents and multimodal apps for ethics and robustness.

Unit I: Foundations of Prompt Engineering: Definition of prompt engineering, Distinction between prompt engineering and model fine-tuning, Motivation and benefits of prompt engineering, Core principles of effective prompt design, Anatomy of a prompt, Setting up the Python environment for LLM interaction, Iterative prompting lifecycle, Common prompt pitfalls and remediation

Lab Experiments:

1. Environment & Connectivity: Install required packages (e.g., transformers, openai); securely configure the API key; run a simple “Hello, world” prompt to verify model access.
2. Baseline vs. Enhanced Prompts: Execute a naïve prompt (“Write a one-paragraph bio of Ada Lovelace.”) and an enhanced prompt that adds role framing, specificity, and explicit format instructions; compare both outputs for relevance, completeness, and style.
3. Iterative Refinement on a Simple Task: Summarize the plot of the Shakespearean play Romeo and Juliet in two sentences through three rounds of prompt tweaking:
 - a. Minimal instruction.
 - b. Addition of length and style constraints
 - c. Specification of key content elements (setting and theme)Document how each iteration changes and improves the result.
4. Diagnosing Prompt Failures & Edge Cases: Craft a vague or contradictory prompt; analyze the failure mode (ambiguity, missing context, or format errors); refine the prompt by adding examples or clarifying instructions.

Unit II: Advanced Prompt Patterns & Techniques: Enhanced prompt anatomy: contextual detail and explicit output specifications, Few-shot in-context prompting, Prompt structuring and template design, Role-based prompting to establish personas or system behavior, Negative prompting to filter or suppress undesired content, Constraint specification and instruction enforcement (e.g., length, format), Iterative prompt refinement and optimization

Lab Experiments:

1. Few-Shot vs. Zero-Shot Comparison: Design and execute a zero-shot prompt and a few-shot prompt (with 2–3 exemplar input-output pairs) for a chosen text task (e.g., sentiment classification or translation); compare outputs for accuracy, consistency, and adherence to examples.
2. Role-Based & Negative Prompting: Craft a role-based prompt to establish a specific persona (e.g., “You are a financial advisor...”); then create a negative prompt to

suppress undesired content (e.g., “Do not mention any brand names”); evaluate how each influences the model’s response.

3. Constraint Specification & Iterative Refinement: Select an open-ended task (e.g., summarizing a technical article); issue a basic prompt; identify failures in length or format; refine the prompt by adding explicit constraints (word count, bullet format, etc.); document improvements over two refinement cycles.

Unit III: Structured Output & Reasoning Techniques: Importance of structured outputs for real-world applications, Prompting for specific formats (lists, tables, Markdown), Generating valid JSON and YAML via explicit instructions, Eliciting chain-of-thought reasoning in zero-shot prompts, Decomposing complex tasks into manageable sub-tasks

Lab Experiments:

1. Structured Format Prompting: Instruct the model to output information as bullet lists and Markdown tables (e.g., “List three benefits of daily exercise in a Markdown table with columns ‘Benefit’ and ‘Description.’”); verify the output matches the requested structure.
2. JSON/YAML Generation: Provide a brief dataset description (e.g., three books with title, author, publication year) and prompt the model to produce valid JSON or YAML; use a parser to validate syntax and refine the prompt if errors occur.
3. Chain-of-Thought & Task Decomposition: Present a multi-step problem (e.g., a logic puzzle) and apply zero-shot CoT prompting (e.g., “Let’s think step by step. Explain your reasoning before the final answer.”); separately, decompose the problem into sequential sub-questions, collect partial answers, combine them, and compare accuracy against a direct-answer baseline.

Unit IV: Retrieval-Augmented Generation & LangChain Workflows: Limitations of LLM internal knowledge, Need for external data sources, Introduction to Retrieval-Augmented Generation (RAG), Overview of RAG architecture (indexing vs. retrieval + generation), Getting started with LangChain for LLM applications, Basics of LangChain Expression Language (LCEL), Simplified indexing pipeline: document loading & text splitting, Fundamentals of embeddings and vector stores, Building a basic retrieval-generation pipeline with an LCEL chain

Lab Experiments:

1. Building a Simple LCEL Chain: Create a minimal LCEL script that accepts a fixed instruction (e.g., “Summarize this text: ...”), passes it to an LLM, and prints the result; verify end-to-end execution.
2. Basic Data Indexing for RAG: Load a small collection of documents; split into uniform chunks (e.g., 200 tokens); generate embeddings for each chunk; store them in an in-memory vector store; inspect for consistency.
3. Constructing & Running a Basic RAG Chain: Build a pipeline that:
 - a. Receives a user query
 - b. Retrieves the top-k relevant chunks
 - c. Constructs a combined prompt with context + query
 - d. Send it to the LLM
 - e. Returns the answer

Test with sample queries and compare factual accuracy against a prompt without retrieval.

Unit V: Agents, Multimodal AI & Ethical Evaluation: Introduction to LLM agents and their basic architecture, Overview of multimodal AI models (VLMs), Prompting for text-to-

image generation and image understanding, Importance of prompt evaluation beyond subjective judgment, Manual evaluation techniques (heuristic checks for accuracy, relevance, format), Introduction to “LLM-as-Judge” for automated evaluation, Security considerations (prompt injection, sensitive-information risks), Prompt-based mitigation strategies for safety and robustness, Ethical concerns (bias, misinformation, data privacy), Brief exploration of UI frameworks (Streamlit/Gradio) for deploying prompt-driven apps, Adapting to the evolving nature of prompt engineering through continuous learning

Lab Experiments:

1. Building a Simple LLM Agent: Register a tool (e.g., a calculator function) and craft prompts that instruct the agent to invoke it when required; implement using LangChain or a function-calling API; test on queries requiring tool execution.
2. Multimodal Prompting Exploration: Generate images from detailed text prompts; feed one generated image into an image-understanding model or API with an appropriate prompt; compare the returned caption to the original prompt to evaluate alignment.
3. Prompt Evaluation & Ethics Workshop:
 - a. Select two existing prompts and generate multiple outputs; apply manual heuristic checks for accuracy, relevance, and format compliance.
 - b. Use an “LLM-as-Judge” prompt (e.g., “Rate these outputs on a scale of 1–5 for clarity and correctness.”) to automate evaluation.
 - c. Design a prompt- injection test (e.g., “Ignore previous instructions...”), observe the response, then refine system prompts to mitigate the vulnerability.

IV Year I Semester	CONSTITUTION OF INDIA	L	T	P	C
		2	0	0	-

Course Objectives: The objectives of the course are to

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective.
- Address the growth of Indian opinion regarding modern Indian intellectuals' constitutional role and entitlement to civil and economic rights as well as the emergence of nationhood in the early years of Indian nationalism.
- Address the role of socialism in India after the commencement of the Bolshevik Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.

UNIT-I:

History of Making of the Indian Constitution: History, Drafting Committee, (Composition & Working)

Philosophy of the Indian Constitution- Preamble, Salient, Features

UNIT-II:

Contours of Constitutional Rights & Duties: Fundamental Rights, Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

UNIT-III:

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, **Executive-** President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions

UNIT-IV:

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative CEO of Municipal Corporation, Pachayati raj: Introduction, PRI: ZilaPachayat, Elected officials and their roles, CEO ZilaPachayat: Position and role, Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy

UNIT-V:

Election Commission: Election Commission: Role and Functioning, Chief Election Commissioner and Election Commissioners, State Election Commission: Role and Functioning, Institute and Bodies for the welfare of SC/ST/OBC and women.

Text Books:

1. The Constitution of India, 1st Edition, (Bare Act), Government Publication, 1950
2. Framing of Indian Constitution, 1st Edition, Dr. S. N. Busi, Dr. B. R. Ambedkar, 2015

Reference Books:

1. Indian Constitution Law, 7th Edition, M. P. Jain, Lexis Nexis, 2014

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

**Minors Courses
in
AI & ML**

ARTIFICIAL INTELLIGENCE	L	T	P	C
	3	0	0	3

Course Objectives:

The main objectives of the course are to introduce the concepts of Artificial Intelligence, methods of solving problems using Artificial Intelligence, Expert Systems, applications of AI, different knowledge representation techniques

UNIT I:

Introduction: AI problems, foundation of AI and history of AI intelligent agents: Agents and Environments, the concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation.

UNIT II:

Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first Search. Search with partial information (Heuristic search) Hill climbing, A*, AO* Algorithms, Problem reduction, Game Playing- Adversial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions.

UNIT III:

Representation of Knowledge: Knowledge representation issues, predicate logic- logic programming, semantic nets- frames and inheritance, constraint propagation, representing knowledge using rules, rules based deduction systems. Reasoning under uncertainty, review of probability, Bayes' probabilistic interferences and dempster-shafer theory.

UNIT IV:

Logic concepts: First-order logic. Inference in first-order logic, propositional vs. first-order inference, unification & lifts forward chaining, Backward chaining, Resolution, Learning from observation, Inductive learning, and Decision trees. Explanation-based learning, Statistical Learning: Naïve Bayes model and EM Algorithm

UNIT V:

Introduction to Machine Learning and Deep Learning, Introduction to Generative AI, Introduction to GenAI Tools: CVedia, Warp, Microsoft PowerBI, Tableau, Github Co-pilot, IBM WatsonX Code assistant.

Text Books:

1. S. Russel and P. Norvig, "Artificial Intelligence–A Modern Approach", Second Edition, Pearson Education.
2. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", McGraw Hill
3. Bernard Marr ., "Generative AI in Practice", Wiely. (GenAI Tools)

Reference Books:

1. David Poole, Alan Mackworth, Randy Goebel," Computational Intelligence: a logical approach", Oxford University Press.
2. G. Luger, "Artificial Intelligence: Structures and Strategies for Complex Problem Solving", Fourth Edition, Pearson Education.
3. J. Nilsson, "Artificial Intelligence: A new Synthesis", Elsevier Publishers.
4. Artificial Intelligence, Saroj Kaushik, CENGAGE Learning.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

e-Resources:

1. <https://ai.google/>
2. https://swayam.gov.in/nd1_noc19_me71/preview

PRINCIPLES OF DATABASE MANAGEMENT SYSTEMS	L	T	P	C
	3	0	3	4.5

Course Objectives:

The main objectives of the course are to

- Introduce database management systems and to give a good formal foundation on the relational model of data and the concepts of SQL
- Demonstrate the principles behind systematic database design approaches by covering conceptual design, logical design through normalization and provide an overview of physical design of a database system, by discussing database storage techniques
- Populate and query a database using SQL DDL/DML Commands and declare & enforce integrity constraints on a database
- Write Queries using advanced concepts of SQL and programming PL/SQL including procedures, functions, cursors and triggers

UNIT I:

Introduction: Database system, Characteristics (Database Vs File System), Database Users, Advantages of Database systems, Database applications. Brief introduction of different Data Models; Concepts of Schema, Instance and data independence; Three tier schema architecture for data independence; Database system structure, environment, Centralized and Client Server architecture for the database.

UNIT II:

Entity Relationship Model: Introduction, Representation of entities, attributes, entity set, relationship, relationship set, constraints, sub classes, super class, inheritance, specialization, generalization using ER Diagrams.

Relational Model: Introduction to relational model, concepts of domain, attribute, tuple, relation, importance of null values, constraints (Domain, Key constraints, integrity constraints) and their importance.

UNIT III:

BASIC SQL: Simple Database schema, data types, table definitions (create, alter), different DML operations (insert, delete, update).

SQL: Basic SQL querying (select and project) using where clause, arithmetic & logical operations, SQL functions(Date and Time, Numeric, String conversion).Creating tables with relationship, implementation of key and integrity constraints, nested queries, sub queries, grouping, aggregation, ordering, implementation of different types of joins, view(updatable and non-updatable), relational set operations.

UNIT IV:

Schema Refinement (Normalization): Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency Lossless join and dependency preserving decomposition, (1NF, 2NF and 3 NF), concept of surrogate key, Boyce-Codd normal form (BCNF).

UNIT V:

Transaction Concept: Transaction State, ACID properties, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for Serializability, lock based, time stamp based, optimistic, concurrency protocols, Deadlocks, Failure Classification, Storage, Recovery and Atomicity, Recovery algorithm.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Text Books:

- 1) Database Management Systems, 3rd edition, Raghurama Krishnan, Johannes Gehrke, TMH (For Chapters 2, 3, 4)
- 2) Database System Concepts, 5th edition, Silberschatz, Korth, Sudarsan, TMH (For Chapter 1 and Chapter 5)

Reference Books:

- 1) Introduction to Database Systems, 8th edition, C J Date, Pearson.
- 2) Database Management System, 6th edition, Ramez Elmasri, Shamkant B. Navathe, Pearson
- 3) Database Principles Fundamentals of Design Implementation and Management, 10th edition, Corlos Coronel, Steven Morris, Peter Robb, Cengage Learning, 2022

Web-Resources:

- 1) <https://nptel.ac.in/courses/106/105/106105175/>
- 2) https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01275806667282022456_shared/overview

Experiments covering the topics:

- DDL, DML, DCL commands
- Queries, nested queries, built-in functions,
- PL/SQL programming- control structures
- Procedures, Functions, Cursors, Triggers,

Sample Experiments:

1. Creation, altering and dropping of tables and inserting rows into a table (use constraints while creating tables), examples using SELECT command.
2. Queries (along with sub Queries) using ANY, ALL, IN, EXISTS, NOT EXISTS, UNION, INTERSET, Constraints.
Example:- Select the roll number and name of the student who secured fourth rank in the class.
3. Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views.
4. Queries using Conversion functions (to_char, to_number and to_date), string functions (Concatenation, lpad, rpad, ltrim, rtrim, lower, upper, initcap, length, substr and instr), date functions (Sysdate, next_day, add_months, last_day, months_between, least, greatest, trunc, round, to_char, to_date)
5.
 - i. Create a simple PL/SQL program which includes declaration section, executable section and exception –Handling section (Ex. Student marks can be selected from the table and printed for those who secured first class and an exception can be raised if no records were found)
 - ii. Insert data into student table and use COMMIT, ROLLBACK and SAVEPOINT in PL/SQL block.
6. Develop a program that includes the features NESTED IF, CASE and CASE expression. The program can be extended using the NULLIF and COALESCE functions.
7. Program development using WHILE LOOPS, numeric FOR LOOPS, nested loops using ERROR Handling, BUILT –IN Exceptions, USE defined Exceptions, RAISE-APPLICATION ERROR.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

8. Program development using creation of procedures, passing parameters IN and OUT of PROCEDURES.
9. Program development using creation of stored functions, invoke functions in SQL Statements and write complex functions.
10. Develop programs using features parameters in a CURSOR, FOR UPDATE CURSOR, WHERE CURRENT of clause and CURSOR variables.
11. Develop Programs using BEFORE and AFTER Triggers, Row and Statement Triggers and INSTEAD OF Triggers

Text Books/Suggested Reading:

1. Oracle: The Complete Reference by Oracle Press
2. Nilesh Shah, "Database Systems Using Oracle", PHI, 2007
3. Rick F Vander Lans, "Introduction to SQL", Fourth Edition, Pearson Education, 2007

ADVANCED DATA STRUCTURES & ALGORITHM ANALYSIS	L	T	P	C
	3	0	3	4.5

Course Objectives:

The main objectives of the course are to

- Provide knowledge on advance data structures frequently used in Computer Sciences domain
- Develop skills in algorithm design techniques popularly used
- Understand the use of various data structures in the algorithm design
- Acquire practical skills in constructing and managing Data structures
- Apply the popular algorithm design methods in problem-solving scenarios

UNIT – I:

Introduction to Algorithm Analysis, Space and Time Complexity analysis, Asymptotic Notations.

AVL Trees – Creation, Insertion, Deletion operations and Applications

B-Trees – Creation, Insertion, Deletion operations and Applications

UNIT – II:

Heap Trees (Priority Queues) – Min and Max Heaps, Operations and Applications

Graphs – Terminology, Representations, Basic Search and Traversals, Connected Components and Biconnected Components, applications

Divide and Conquer: The General Method, Quick Sort, Merge Sort, Strassen's matrix multiplication, Convex Hull

UNIT – III:

Greedy Method: General Method, Job Sequencing with deadlines, Knapsack Problem, Minimum cost spanning trees, Single Source Shortest Paths

Dynamic Programming: General Method, All pairs shortest paths, Single Source Shortest Paths – General Weights (Bellman Ford Algorithm), Optimal Binary Search Trees, 0/1 Knapsack, String Editing, Travelling Salesperson problem

UNIT – IV:

Backtracking: General Method, 8-Queens Problem, Sum of Subsets problem, Graph Coloring, 0/1 Knapsack Problem

Branch and Bound: The General Method, 0/1 Knapsack Problem, Travelling Salesperson Problem

UNIT – V:

NP Hard and NP Complete Problems: Basic Concepts, Cook's theorem

NP Hard Graph Problems: Clique Decision Problem (CDP), Chromatic Number Decision Problem (CNDP), Traveling Salesperson Decision Problem (TSP)

NP Hard Scheduling Problems: Scheduling Identical Processors, Job Shop Scheduling

Textbooks:

1. Fundamentals of Data Structures in C++, Horowitz, Ellis; Sahni, Sartaj; Mehta, Dinesh, 2nd Edition Universities Press

2. Computer Algorithms in C++, Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, 2nd Edition University Press

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Reference Books:

1. Data Structures and program design in C, Robert Kruse, Pearson Education Asia
2. An introduction to Data Structures with applications, Trembley& Sorenson, McGraw Hill
3. The Art of Computer Programming, Vol.1: Fundamental Algorithms, Donald E Knuth, Addison-Wesley, 1997.
4. Data Structures using C & C++: Langsam, Augenstein&Tanenbaum, Pearson, 1995
5. Algorithms + Data Structures & Programs:, N.Wirth, PHI
6. Fundamentals of Data Structures in C++: Horowitz Sahni& Mehta, Galgotia Pub.
7. Data structures in Java:, Thomas Standish, Pearson Education Asia

Online Learning Resources:

1. https://www.tutorialspoint.com/advanced_data_structures/index.asp
2. <http://peterindia.net/Algorithms.html>
3. Abdul Bari, Introduction to Algorithms (youtube.com)

Experiments covering the Topics:

- Operations on AVL trees, B-Trees, Heap Trees
- Graph Traversals
- Sorting techniques
- Minimum cost spanning trees
- Shortest path algorithms
- 0/1 Knapsack Problem
- Travelling Salesperson problem
- Optimal Binary Search Trees
- N-Queens Problem
- Job Sequencing

Sample Programs:

1. Construct an AVL tree for a given set of elements which are stored in a file. And implement insert and delete operation on the constructed tree. Write contents of tree into a new file using in-order.
2. Construct B-Tree an order of 5 with a set of 100 random elements stored in array. Implement searching, insertion and deletion operations.
3. Construct Min and Max Heap using arrays, delete any element and display the content of the Heap.
4. Implement BFT and DFT for given graph, when graph is represented by
 - a) Adjacency Matrix
 - b) Adjacency Lists
5. Write a program for finding the biconnected components in a given graph.
6. Implement Quick sort and Merge sort and observe the execution time for various input sizes (Average, Worst and Best cases).
7. Compare the performance of Single Source Shortest Paths using Greedy method when the graph is represented by adjacency matrix and adjacency lists.
8. Implement Job Sequencing with deadlines using Greedy strategy.
9. Write a program to solve 0/1 Knapsack problem Using Dynamic Programming.
10. Implement N-Queens Problem Using Backtracking.
11. Use Backtracking strategy to solve 0/1 Knapsack problem.
12. Implement Travelling Sales Person problem using Branch and Bound approach.

Reference Books:

1. Fundamentals of Data Structures in C++, Horowitz Ellis, SahniSartaj, Mehta, Dinesh, 2nd Edition, Universities Press

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

2. Computer Algorithms/C++ Ellis Horowitz, SartajSahni, SanguthevarRajasekaran, 2nd Edition, University Press
3. Data Structures and program design in C, Robert Kruse, Pearson Education Asia
4. An introduction to Data Structures with applications, Trembley & Sorenson, McGraw Hill

Online Learning Resources:

1. <http://cse01-iiith.vlabs.ac.in/>

MACHINE LEARNING	L	T	P	C
	3	0	0	3

Course Objectives:

The objectives of the course are to

- Define machine learning and its different types (supervised and unsupervised) and understand their applications.
- Apply supervised learning algorithms including decision trees and k-nearest neighbours (k-NN).
- Implement unsupervised learning techniques, such as K-means clustering.

UNIT – I:

Introduction to Machine Learning: Evolution of Machine Learning, Paradigms for ML, Learning by Rote, Learning by Induction, Reinforcement Learning, Types of Data, Matching, Stages in Machine Learning, Data Acquisition, Feature Engineering, Data Representation, Model Selection, Model Learning, Model Evaluation, Model Prediction, Search and Learning, Data Sets.

UNIT – II:

Nearest Neighbor-Based Models: Introduction to Proximity Measures, Distance Measures, Non-Metric Similarity Functions, Proximity Between Binary Patterns, Different Classification Algorithms Based on the Distance Measures ,K-Nearest Neighbor Classifier, Radius Distance Nearest Neighbor Algorithm, KNN Regression, Performance of Classifiers, Performance of Regression Algorithms

UNIT – III:

Models Based on Decision Trees: Decision Trees for Classification, Impurity Measures, Properties, Regression Based on Decision Trees, Bias–Variance Trade-off, Random Forests for Classification and Regression.

The Bayes Classifier: Introduction to the Bayes Classifier, Bayes' Rule and Inference, The Bayes Classifier and its Optimality, Multi-Class Classification | Class Conditional Independence and Naive Bayes Classifier (NBC)

UNIT – IV:

Linear Discriminants for Machine Learning: Introduction to Linear Discriminants, Linear Discriminants for Classification, Perceptron Classifier, Perceptron Learning Algorithm, Support Vector Machines, Linearly Non-Separable Case, Non-linear SVM, Kernel Trick, Logistic Regression, Linear Regression, Multi-Layer Perceptrons (MLPs), Back propagation for Training an MLP.

UNIT – V:

Clustering : Introduction to Clustering, Partitioning of Data, Matrix Factorization | Clustering of Patterns, Divisive Clustering, Agglomerative Clustering, Partitional Clustering, K-Means Clustering, Soft Partitioning, Soft Clustering, Fuzzy C-Means Clustering, Rough Clustering, Rough K-Means Clustering Algorithm, Expectation Maximization-Based Clustering, Spectral Clustering

Text Books:

1. "Machine Learning Theory and Practice", M N Murthy, VS Ananthanarayana, Universities Press (India), 2024

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Reference Books:

1. "Machine Learning", Tom M. Mitchell, McGraw-Hill Publication, 2017
2. Introduction to Machine Learning, Ethem Alpaydin, MIT Press, 2004
3. "Machine Learning in Action", Peter Harrington, Dream Tech
4. "Introduction to Data Mining", Pang-Ning Tan, Michel Stenbach, Vipin Kumar, 7th Edition, 2019.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

**Honors Courses
in
AI & ML**

BUSINESS INTELLIGENCE	L	T	P	C
	3	0	0	3

Course Objective: The main objectives of the course are to

- Introduce the nature of data, statistical Modelling and visualization.
- Learn concepts of Business Intelligence and Data Warehousing.
- Gain knowledge on Data mining process and SNA, text & Web analytics.

Unit I:

An Overview of Business Intelligence, Analytics, Data Science, and AI: Changing Business Environments and Evolving Needs for Decision Support and Analytics, Decision-Making Processes and Computerized Decision Support Framework, Evolution of Computerized Decision Support to Analytics/Data Science, A Framework for Business Intelligence, Analytics Overview.

Note: Text Book1: Chapter 1 (1.2-1.6)

Unit II:

Descriptive Analytics I -Nature of Data, Big Data, and Statistical Modeling: The Nature of Data in Analytics, A Simple Taxonomy of Data, The Art and Science of Data Preprocessing, Definition of Big Data, Fundamentals of Big Data Analytics, Big Data Technologies, Big Data and Stream Analytics, Statistical Modeling for Business Analytics, Regression Modeling for Inferential Statistics.

Note: Text Book1: Chapter 3 (3.2-3.10)

Unit III:

Descriptive Analytics II: Business Intelligence Data Warehousing, and Visualization: Business Intelligence and Data Warehousing, Data Warehousing Process, Data Warehousing Architectures, Data Management and Warehouse Development, Data Warehouse Administration, Security Issues, and Future Trends, Business Reporting, Data Visualization, Different Types of Charts and Graphs, The Emergence of Visual Analytics, Information Dashboards.

Note: Text Book1: Chapter 4 (4.2-4.11)

Unit IV:

Predictive Analytics I - Data mining process, methods, and Algorithms: Data Mining Concepts and Applications, Data Mining Applications, Data Mining Process, Data Mining Methods. Prescriptive Analytics - Optimization and Simulation: Model-Based Decision-Making, Structure of Mathematical Models for Decision Support, Certainty, Uncertainty, and Risk, Decision Modeling with Spreadsheets.

Note: Text Book1: Chapter 5 (5.2-5.5), Chapter-8 (8.2-8.5)

Unit V:

Predictive Analytics II - Text, Web, and Social Media Analytics: Text Analytics and Text Mining Overview, Natural Language Processing (NLP), Text Mining Applications, Text Mining Process, Sentiment Analysis and Topic Modeling, Web Mining Overview, Search Engines, Web Usage Mining (Web Analytics), Social Analytics.

Note: Text Book1: Chapter 6 (6.2-6.10)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Text Books:

1. Ramesh Sharda, DursunDelen and Efraim Turban, “Business Intelligence, Analytics, Data Science and AI – A Managerial Perspective”, 5th edition, Global Edition, Pearson Education Limited, 2024

Reference Books:

1. Steve Williams, Business Intelligence Strategy and Big Data Analytics - A General Management Perspective, Morgan Kaufmann (Elsevier), 2016.
2. Vincent Charles, Pratibha Garg, Neha Gupta and Mohini Agarwal, Data Analytics and Business Intelligence -Computational Frameworks, Practices, and Applications, CRC Press, 2023.
3. Ira J. Haimowitz, Data Analytics For Business - Lessons for Sales, Marketing, and Strategy, Routledge (Taylor & Francis), 2023.

e-Resources:

- <https://www.tableau.com/business-intelligence/what-is-business-intelligence>
- https://onlinecourses.nptel.ac.in/noc24_cs65/preview
- https://onlinecourses.nptel.ac.in/noc21_cs45/preview
- <https://cloud.google.com/learn/what-is-business-intelligence>
- <https://www.geeksforgeeks.org/what-is-data-analytics/>

Explainable AI	L	T	P	C
	3	0	0	3

Course Objectives:

The main objectives of the course are to

- Understand the importance of explainability in AI and its impact on stakeholders.
- Explore different techniques and methods for making AI systems explainable.
- Analyze the trade-offs between model complexity and interpretability.
- Examine the ethical and societal implications of XAI.
- Apply XAI techniques to real-world datasets and scenarios.

UNIT I:

Introduction to Explainable AI (XAI): Motivations for XAI, Importance of interpretability and transparency Techniques for XAI, Model-specific interpretability methods (e.g., decision trees, rulebased systems) Model-agnostic interpretability methods (e.g., LIME,SHAP) Post-hoc explanation techniques (e.g., feature importance, counterfactual explanation

UNIT II:

Interpretable Models: Linear models, Decision trees and rule-based systems Symbolic AI approaches, Interpretable Neural Networks, Sparse neural networks, Attention mechanisms, Layer-wise relevance propagation (LRP)

UNIT III:

Methods for Explainable AI: Partial Dependence Plot (PDP), Conformal Prediction, Individual Conditional Expectation (ICE), Feature Importance, Saliency Maps, Local Interpretable Model-Agnostic Explanations (LIME), SHAP, Integrated Gradient (IG), Explainability for Linear Models, Non-linear models and Deep Learning Models.

UNIT IV:

Evaluation of XAI Methods: Quantitative metrics for interpretability, Human-centric evaluation methods, Ethical and Societal Implications of XAIB, is and fairness in interpretable AI, Trust and accountability in AI systems,Regulatory considerations.

UNIT V:

Applications of XAI: Healthcare (e.g., medical diagnosis, personalized treatment) Finance (e.g., credit scoring, fraud detection), Autonomous systems (e.g., self-driving cars, drones). Explainability in Time Series Forecasting, Natural Language Processing, and Computer Vision

Text Books:

1. "Interpretable Machine Learning" by Christoph Molnar
2. "Explainable AI: Interpreting, Explaining and Visualizing Deep Learning" by L. Liu and G. Hu

Reference Books:

1. "Interpretable Machine Learning: A Guide for Making Black Box Models Explainable" by Christoph Molnar
2. "Explainable AI: Interpreting, Explaining and Visualizing Deep Learning" by L. Liu and G. Hu
3. "Explainable AI in Healthcare: Exploring Interpretable Models and Learning from Patient Data" edited by F. E. Elsayed and B. G. Stoecklin

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Online Resources:

1. <https://christophm.github.io/interpretable-ml-book/>

GENERATIVE AI	L	T	P	C
	3	0	0	3

Course Objective:

The main objectives of the course are to introduce the basics of Generative AI, Text Generation and the process of generating videos, GAN and its variants.

UNIT I:

Introduction To Gen Ai: Historical Overview of Generative modelling, Difference between Gen AI and Discriminative Modeling, Importance of generative models in AI and Machine Learning, Types of Generative models, GANs, VAEs, autoregressive models and Vector quantized Diffusion models, Understanding if probabilistic modeling and generative process, Challenges of Generative Modeling, Future of Gen AI, Ethical Aspects of AI, Responsible AI, Use Cases.

UNIT II:

Generative Models For Text: Language Models Basics, Building blocks of Language models, Transformer Architecture, Encoder and Decoder, Attention mechanisms, Generation of Text, Models like BERT and GPT models, Generation of Text, Autoencoding, Regression Models, Exploring ChatGPT, Prompt Engineering: Designing Prompts, Revising Prompts using Reinforcement Learning from Human Feedback (RLHF), Retrieval Augmented Generation, Multimodal LLM, Issues of LLM like hallucination.

UNIT III:

Generation of Images: Introduction to Generative Adversarial Networks, Adversarial Training Process, Nash Equilibrium, VariationalAutoencoders, Encoder-Decoder Architectures, Stable Diffusion Models, Introduction to Transformer-based Image Generation, CLIP, Visual Transformers ViT- Dall-E2 and Dall-E3, GPT-4V, Issues of Image Generation models like Mode Collapse and Stability.

UNIT IV:

Generation of Painting, Music, and Play: Variants of GAN, Types of GAN, Cyclic GAN, Using Cyclic GAN to Generate Paintings, Neural Style Transfer, Style Transfer, Music Generating RNN, MuseGAN, Autonomous agents, Deep Q Algorithm, Actor-critic Network.

UNIT V:

Open Source Models And Programming Frameworks: Training and Fine tuning of Generative models, GPT4All, Transfer learning and Pretrained models, Training vision models, Google Copilot, Programming LLM, LangChain, Open Source Models, Llama, Programming for TimeSformer, Deployment, Hugging Face.

Text Books:

1. Denis Rothman, "Transformers for Natural Language Processing and Computer Vision", Third Edition, Packt Books, 2024

Reference Books:

1. David Foster, "Generative Deep Learning", O'Reilly Books, 2024.
2. AltafRehmani, "Generative AI for Everyone", BlueRose One, 2024.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

B. Tech CSE (AI&ML) (R23) COURSE STRUCTURE & SYLLABUS

(Applicable from the academic year 2023-24 and onwards)

Agentic AI	L	T	P	C
	3	0	0	3

The Syllabus of this course will be communicated soon.